cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160908 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 9.

Original entry on oeis.org

1, 255, 3280, 32640, 97656, 836400, 960800, 4177920, 7173360, 24902280, 21435888, 107059200, 67977560, 245004000, 320311680, 534773760, 435984840, 1829206800, 943531280, 3187491840, 3151424000, 5466151440, 3559590240, 13703577600, 7629375000, 17334277800
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^8 such that the quotient group Z^8 / L is C_n. - Álvar Ibeas, Oct 30 2015

Crossrefs

Programs

  • Mathematica
    A160908[n_]:=DivisorSum[n,MoebiusMu[n/# ]*#^(9-1)/EulerPhi[n]&] (* Enrique Pérez Herrero, Oct 28 2010 *)
    f[p_, e_] := p^(7*e - 7) * (p^8-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(30, n, sumdiv(n^7, d, if(ispower(d, 8), moebius(sqrtnint(d, 8))*sigma(n^7/d), 0))) \\ Altug Alkan, Oct 30 2015
    
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, p = f[i,1]; f[i,1] = p^(7*f[i,2]-7)*(p^8-1)/(p-1); f[i,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 12 2015

Formula

a(n) = J_8(n)/J_1(n) = J_8(n)/phi(n) = A069093(n)/A000010(n), where J_k is the k-th Jordan totient function. - Enrique Pérez Herrero, Oct 28 2010
From Álvar Ibeas, Oct 30 2015: (Start)
Multiplicative with a(p^e) = p^(7e-7) * (p^8-1) / (p-1).
For squarefree n, a(n) = A000203(n^7). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^8, where c = (1/8) * Product_{p prime} (1 + (p^7-1)/((p-1)*p^8)) = 0.2423008904... .
Sum_{k>=1} 1/a(k) = zeta(7)*zeta(8) * Product_{p prime} (1 - 2/p^8 + 1/p^15) = 1.004270064601... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^8). - Ridouane Oudra, Apr 01 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 28 2010