A160953 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 10.
1, 511, 9841, 130816, 488281, 5028751, 6725601, 33488896, 64566801, 249511591, 235794769, 1287360256, 883708281, 3436782111, 4805173321, 8573157376, 7411742281, 32993635311, 17927094321, 63874967296, 66186639441, 120491126959, 81870575521, 329564225536
Offset: 1
Links
- Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
- Enrique Pérez Herrero, Mathematica Package: Jordan Totient Function.
- Jin Ho Kwak and Jaeun Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.
- Index to Jordan function ratios J_k/J_1.
Programs
-
Maple
A160953 := proc(n) add(numtheory[mobius](n/d)*d^9,d=numtheory[divisors](n)) ; %/numtheory[phi](n) ; end proc: for n from 1 to 5000 do printf("%d %d\n",n,A160953(n)) ; end do: # R. J. Mathar, Mar 14 2016
-
Mathematica
JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/#]&]/;(n>0)&&IntegerQ[n]; A160953[n_]:=JordanTotient[n,9]/JordanTotient[n]; f[p_, e_] := p^(8*e - 8) * (p^9-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
-
PARI
vector(100, n, sumdiv(n^8, d, if(ispower(d, 9), moebius(sqrtnint(d, 9))*sigma(n^8/d), 0))) \\ Altug Alkan, Nov 05 2015
-
PARI
a(n) = {f = factor(n); for (i=1, #f~, p = f[i,1]; f[i,1] = p^(8*f[i,2]-8)*(p^9-1)/(p-1); f[i,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 12 2015
Formula
From Álvar Ibeas, Nov 03 2015: (Start)
Multiplicative with a(p^e) = p^(8e-8) * (p^9-1) / (p-1).
For squarefree n, a(n) = A000203(n^8). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^9, where c = (1/9) * Product_{p prime} (1 + (p^8-1)/((p-1)*p^9)) = 0.2156692448... .
Sum_{k>=1} 1/a(k) = zeta(8)*zeta(9) * Product_{p prime} (1 - 2/p^9 + 1/p^17) = 1.002068659133... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^9). - Ridouane Oudra, Apr 01 2025
Extensions
Definition corrected by Enrique Pérez Herrero, Oct 30 2010
Comments