cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160953 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 10.

Original entry on oeis.org

1, 511, 9841, 130816, 488281, 5028751, 6725601, 33488896, 64566801, 249511591, 235794769, 1287360256, 883708281, 3436782111, 4805173321, 8573157376, 7411742281, 32993635311, 17927094321, 63874967296, 66186639441, 120491126959, 81870575521, 329564225536
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^9 such that the quotient group Z^9 / L is C_n. - Álvar Ibeas, Nov 03 2015

Crossrefs

Programs

  • Maple
    A160953 := proc(n)
        add(numtheory[mobius](n/d)*d^9,d=numtheory[divisors](n)) ;
        %/numtheory[phi](n) ;
    end proc:
    for n from 1 to 5000 do
        printf("%d %d\n",n,A160953(n)) ;
    end do: # R. J. Mathar, Mar 14 2016
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/#]&]/;(n>0)&&IntegerQ[n];
    A160953[n_]:=JordanTotient[n,9]/JordanTotient[n];
    f[p_, e_] := p^(8*e - 8) * (p^9-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^8, d, if(ispower(d, 9), moebius(sqrtnint(d, 9))*sigma(n^8/d), 0))) \\ Altug Alkan, Nov 05 2015
    
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, p = f[i,1]; f[i,1] = p^(8*f[i,2]-8)*(p^9-1)/(p-1); f[i,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 12 2015

Formula

a(n) = J_9(n)/phi(n) = A069094(n)/A000010(n).
From Álvar Ibeas, Nov 03 2015: (Start)
Multiplicative with a(p^e) = p^(8e-8) * (p^9-1) / (p-1).
For squarefree n, a(n) = A000203(n^8). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^9, where c = (1/9) * Product_{p prime} (1 + (p^8-1)/((p-1)*p^9)) = 0.2156692448... .
Sum_{k>=1} 1/a(k) = zeta(8)*zeta(9) * Product_{p prime} (1 - 2/p^9 + 1/p^17) = 1.002068659133... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^9). - Ridouane Oudra, Apr 01 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010