cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160974 Number of partitions of n where every part appears at least 4 times.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 2, 1, 4, 2, 4, 4, 7, 5, 8, 7, 13, 10, 13, 12, 21, 18, 22, 21, 34, 29, 40, 36, 55, 48, 63, 64, 88, 79, 100, 99, 139, 125, 160, 155, 207, 199, 241, 241, 314, 302, 369, 366, 466, 454, 550, 557, 690, 679, 807, 821, 1016, 1001, 1180, 1207, 1460, 1466, 1708
Offset: 0

Views

Author

R. H. Hardin, Jun 01 2009

Keywords

Examples

			a(12) = 4 because we have 3333, 2^6, 22221111, and 1^(12). - _Emeric Deutsch_, Jun 24 2009
		

Crossrefs

Programs

  • Maple
    g := product(1+x^(4*j)/(1-x^j), j = 1..30): gser := series(g, x = 0, 85): seq(coeff(gser, x, n), n = 0..66); # Emeric Deutsch, Jun 24 2009
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1), j=[0, $4..iquo(n, i)])))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, Oct 02 2017
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1 + x^(4*k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2015; offset adapted by Georg Fischer, Sep 18 2020 *)

Formula

G.f.: Product_{j>=1} (1+x^(4*j)/(1-x^j)). - Emeric Deutsch, Jun 24 2009
a(n) ~ sqrt(Pi^2 + 6*c) * exp(sqrt((2*Pi^2/3 + 4*c)*n)) / (4*sqrt(3)*Pi*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-4*x)) dx = -0.903005550655893892139378653023287247062261773608753265529... . - Vaclav Kotesovec, Jan 05 2016

Extensions

Initial terms changed to match b-file. - N. J. A. Sloane, Aug 31 2009
Maple program fixed by Vaclav Kotesovec, Nov 28 2015
a(0)=1 prepended by Alois P. Heinz, Oct 02 2017