A160990 Number of partitions of n where every part appears at least 20 times.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 2, 4, 4, 5, 4, 7, 5, 7, 7, 8, 7, 10, 8, 10, 10, 11, 10, 13, 11, 15, 14, 15, 15, 19, 16, 19, 19, 21, 20, 23, 21, 25, 24, 25, 25, 29, 26, 29, 29, 34, 31, 35, 33, 38, 38, 39, 38, 44
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 1..1000 from R. H. Hardin)
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+add(b(n-i*j, i-1), j=20..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..108); # Alois P. Heinz, Feb 06 2024
-
Mathematica
nmax = 100; Rest[CoefficientList[Series[Product[1 + x^(20*k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 28 2015 *)
Formula
a(n) ~ sqrt(Pi^2 + 6*c) * exp(sqrt((2*Pi^2/3 + 4*c)*n)) / (4*sqrt(3)*Pi*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-20*x)) dx = -1.354168532835449099374593344112387373408094711414623392193... . - Vaclav Kotesovec, Jan 05 2016
Extensions
a(0)=1 prepended by Alois P. Heinz, Feb 06 2024