cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160990 Number of partitions of n where every part appears at least 20 times.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 2, 4, 4, 5, 4, 7, 5, 7, 7, 8, 7, 10, 8, 10, 10, 11, 10, 13, 11, 15, 14, 15, 15, 19, 16, 19, 19, 21, 20, 23, 21, 25, 24, 25, 25, 29, 26, 29, 29, 34, 31, 35, 33, 38, 38, 39, 38, 44
Offset: 0

Views

Author

R. H. Hardin, Jun 01 2009

Keywords

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-i*j, i-1), j=20..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..108);  # Alois P. Heinz, Feb 06 2024
  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Product[1 + x^(20*k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 28 2015 *)

Formula

a(n) ~ sqrt(Pi^2 + 6*c) * exp(sqrt((2*Pi^2/3 + 4*c)*n)) / (4*sqrt(3)*Pi*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-20*x)) dx = -1.354168532835449099374593344112387373408094711414623392193... . - Vaclav Kotesovec, Jan 05 2016

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 06 2024