A160999 Row sums of A027052.
1, 2, 5, 12, 31, 84, 233, 656, 1865, 5338, 15355, 44342, 128455, 373100, 1086087, 3167634, 9254009, 27074666, 79316491, 232633206, 683026535, 2007327660, 5904415195, 17381265934, 51203990457, 150945252394, 445252685313
Offset: 0
Examples
a(2) = 1+0+1+2+1 = 5. a(3) = 1+0+1+2+3+4+1 = 12.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
A027052 := proc(n,k) option remember; if k =0 or k = 2*n then 1; elif k = 1 then 0; elif k =2 then 1; else procname(n-1,k-3)+procname(n-1,k-2)+procname(n-1,k-1) ; fi; end: A160999 := proc(n) add( A027052(n,k),k=0..2*n) ; end: seq(A160999(n),n=0..30) ;
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]; Table[Sum[T[n, k], {k,0,2*n}], {n,0,30}] (* G. C. Greubel, Nov 06 2019 *)
-
Sage
@CachedFunction def T(n, k): if (k==0 or k==2 or k==2*n): return 1 elif (k==1): return 0 else: return sum(T(n-1, k-j) for j in (1..3)) [sum(T(n, k) for k in (0..2*n)) for n in (0..30)] # G. C. Greubel, Nov 06 2019
Formula
a(n) = Sum_{k=0..2*n} A027052(n,k).
Conjecture: (-n+2)*a(n) +(6*n-11)*a(n-1) +(-7*n+1)*a(n-2) +2*(-4*n+27)*a(n-3) +(5*n-28)*a(n-4) +(2*n-3)*a(n-5) +3*(n-5)*a(n-6)=0. - R. J. Mathar, May 26 2016