cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A161136 Triangular array S(m,n), 1<=n<=m, giving the total number of tossed cards in the card game described in A161135.

Original entry on oeis.org

1, 2, 3, 3, 8, 9, 4, 7, 17, 18, 5, 17, 57, 79, 80, 6, 35, 25, 113, 195, 196, 7, 48, 165, 326, 355, 553, 554, 8, 15, 154, 500, 982, 1264, 1823, 1824, 9, 34, 81, 661, 1667, 2804, 466, 2291, 2292, 10, 99, 99, 168, 1055, 2284, 2624, 4923, 7217, 7218, 11, 32, 606, 2069
Offset: 1

Views

Author

Max Alekseyev, Jun 02 2009

Keywords

Comments

Formatted as a triangular array:
m=1: 1
m=2: 2, 3
m=3: 3, 8, 9
m=4: 4, 7, 17, 18
m=5: 5, 17, 57, 79, 80
m=6: 6, 35, 25, 113, 195, 196
m=7: 7, 48, 165, 326, 355, 553, 554
m=8: 8, 15, 154, 500, 982, 1264, 1823, 1824
m=9: 9, 34, 81, 661, 1667, 2804, 466, 2291, 2292
m=10: 10, 99, 99, 168, 1055, 2284, 2624, 4923, 7217, 7218
m=11: 11, 32, 606, 2069, 4988, 9133, 22910, 4871, 38298, 45521, 45522
m=12: 12, 70, 215, 782, 3170, 9850, 39347, 40076, 147279, 242603, 288134, 288135

Crossrefs

A161135 (the number of deals)

Programs

  • PARI
    { T(m,n) = local(v,r,k,t); v=vector(n); v[1]=m; r=0; k=1; until( vecmax(v)==m, t=v[k]; r+=t; v[k]=0; k=0; while(t, k++; if(k>n, k=1); v[k]++; t--) ); r }

Formula

S(m,m)=S(m,m-1)+1

A161137 Main diagonal of the triangular array A161135.

Original entry on oeis.org

1, 2, 5, 9, 37, 86, 232, 748, 932, 2865, 17761, 109780, 249840, 1190787, 3869645, 6479631, 69445201, 75334942
Offset: 1

Views

Author

Max Alekseyev, Jun 02 2009

Keywords

Crossrefs

Formula

a(m) = A161135(m,m)

A161138 Main diagonal of the triangular array A161136.

Original entry on oeis.org

1, 3, 9, 18, 80, 196, 554, 1824, 2292, 7218, 45522, 288135, 660113, 3201130, 10512530, 17675063, 191230544, 207521990
Offset: 1

Views

Author

Max Alekseyev, Jun 02 2009

Keywords

Crossrefs

Formula

a(m) = A161136(m,m).
Showing 1-3 of 3 results.