A161151 a(n) = (largest odd divisor of (n+1))*(largest power of 2 dividing n).
1, 6, 1, 20, 3, 14, 1, 72, 5, 22, 3, 52, 7, 30, 1, 272, 9, 38, 5, 84, 11, 46, 3, 200, 13, 54, 7, 116, 15, 62, 1, 1056, 17, 70, 9, 148, 19, 78, 5, 328, 21, 86, 11, 180, 23, 94, 3, 784, 25, 102, 13, 212, 27, 110, 7, 456, 29, 118, 15, 244, 31, 126, 1, 4160, 33, 134, 17, 276, 35
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
Programs
-
Maple
nmax:=69: for n from 1 to nmax do for k from 1 to floor(log[2](nmax)) do a(2^k*(2*n-1) - 1) := 2*n-1; a(2^k*(2*n-1)) := 2^k*(1 + 2^k*(2*n-1)) od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Oct 31 2012
-
Mathematica
Array[SelectFirst[Reverse@ Divisors[# + 1], OddQ]*2^IntegerExponent[#, 2] &, 69] (* Michael De Vlieger, Nov 02 2017 *)
-
PARI
a(n)=(n+1)>>valuation(n+1,2)<
Charles R Greathouse IV, Oct 31 2012
Formula
a(2^k*(2*n-1) - 1) = 2*n-1 and a(2^k*(2*n-1)) = 2^k*(1 + 2^k*(2*n-1)), n >= 1 and k >= 1. - Johannes W. Meijer, Oct 31 2012
1 <= a(n) <= n^2 + n; both bounds are sharp. - Charles R Greathouse IV, Oct 31 2012
Extensions
Extended by Ray Chandler, Jun 11 2009