cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161151 a(n) = (largest odd divisor of (n+1))*(largest power of 2 dividing n).

Original entry on oeis.org

1, 6, 1, 20, 3, 14, 1, 72, 5, 22, 3, 52, 7, 30, 1, 272, 9, 38, 5, 84, 11, 46, 3, 200, 13, 54, 7, 116, 15, 62, 1, 1056, 17, 70, 9, 148, 19, 78, 5, 328, 21, 86, 11, 180, 23, 94, 3, 784, 25, 102, 13, 212, 27, 110, 7, 456, 29, 118, 15, 244, 31, 126, 1, 4160, 33, 134, 17, 276, 35
Offset: 1

Views

Author

Leroy Quet, Jun 03 2009

Keywords

Crossrefs

Programs

  • Maple
    nmax:=69: for n from 1 to nmax do for k from 1 to floor(log[2](nmax)) do a(2^k*(2*n-1) - 1) := 2*n-1; a(2^k*(2*n-1)) := 2^k*(1 + 2^k*(2*n-1)) od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Oct 31 2012
  • Mathematica
    Array[SelectFirst[Reverse@ Divisors[# + 1], OddQ]*2^IntegerExponent[#, 2] &, 69] (* Michael De Vlieger, Nov 02 2017 *)
  • PARI
    a(n)=(n+1)>>valuation(n+1,2)<Charles R Greathouse IV, Oct 31 2012

Formula

a(n)*A161150(n) = n*(n+1) = A002378(n).
a(n) = A000265(n+1)*A006519(n).
a(2^k*(2*n-1) - 1) = 2*n-1 and a(2^k*(2*n-1)) = 2^k*(1 + 2^k*(2*n-1)), n >= 1 and k >= 1. - Johannes W. Meijer, Oct 31 2012
1 <= a(n) <= n^2 + n; both bounds are sharp. - Charles R Greathouse IV, Oct 31 2012
a(2*n-1) = A000265(n) and a(2*n) = 2*A182241(n) - Johannes W. Meijer, Dec 24 2012

Extensions

Extended by Ray Chandler, Jun 11 2009