cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161172 a(n) is the order (or period) of the "Yummie" permutation applied to a set of n objects.

Original entry on oeis.org

1, 2, 3, 3, 5, 5, 6, 7, 15, 20, 11, 24, 24, 14, 6, 28, 17, 120, 55, 180, 21, 18, 60, 42, 90, 153, 140, 429, 56, 152, 60, 70, 483, 3640, 180, 272, 72, 1260, 180, 252, 174, 1260, 36, 442, 1404, 660, 47, 496, 240, 481, 48, 98, 570, 572
Offset: 1

Views

Author

Colm Mulcahy, Jun 04 2009

Keywords

Comments

The Yummie permutation is done as follows. Start with a packet of n cards (numbered 1 to n from top to bottom), and deal them into two piles, first to a spectator (pile A), and then to yourself (pile B), saying "You, me," silently to yourself over and over. Then, pick up pile B and deal again, first to the spectator, thereby adding to the existing pile A, and then to yourself, forming a new pile B. Repeat, picking up the diminished pile B, and dealing "You, me" as before. Eventually, just one card remains in pile B; place it on top of pile A. The sequence of cards in pile A determines the Yummie permutation ("You, me" said fast sounds like "Yummie").

Examples

			a(9) = 15, because when the Yummie permutation is applied to {1,2,3,4,5,6,7,8,9} we get {6,2,4,8,9,7,5,3,1}, which corresponds to the product of a disjoint five cycle and a three cycle, and hence has order 15.
		

Crossrefs

Programs

  • PARI
    P(n,i)={if(i%2, n-(i\2), P(n\2, (n-i)\2+1))}
    Follow(s, f)={my(t=f(s), k=1); while(t>s, k++; t=f(t)); if(s==t, k, 0)}
    Cycles(n)={my(L=List()); for(i=1, n, my(k=Follow(i, j->P(n, j))); if(k, listput(L,k))); vecsort(Vec(L))}
    a(n)={lcm(Cycles(n))} \\ Andrew Howroyd, Apr 28 2020