A161240 Number of partitions of n into central binomial coefficients A001405.
1, 2, 3, 4, 5, 8, 9, 12, 15, 19, 22, 29, 33, 40, 47, 56, 63, 76, 85, 100, 113, 131, 146, 169, 187, 214, 237, 268, 295, 334, 365, 410, 449, 499, 545, 606, 657, 727, 789, 868, 940, 1033, 1114, 1219, 1315, 1433, 1542, 1678, 1800, 1954, 2095, 2266, 2426, 2619, 2798
Offset: 1
Keywords
Examples
a(6)=8 because we have 6, 33, 321, 3111, 222, 2211, 21111, and 111111. - _Emeric Deutsch_, Jun 21 2009
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1000
Programs
-
Maple
g := 1/(product(1-x^binomial(j, floor((1/2)*j)), j = 1 .. 15)): gser := series(g, x = 0, 63): seq(coeff(gser, x, n), n = 1 .. 55); # Emeric Deutsch, Jun 21 2009
Formula
G.f.: 1/Product_{j>=1} (1 - x*binomial(j, floor(j/2))). - Emeric Deutsch, Jun 21 2009