A161345 Numbers k whose largest divisor <= sqrt(k) is 3.
9, 12, 15, 18, 21, 27, 33, 39, 51, 57, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 201, 213, 219, 237, 249, 267, 291, 303, 309, 321, 327, 339, 381, 393, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 699, 717, 723
Offset: 1
Links
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Omar E. Pol, Illustration: Divisors and pi(x).
- Omar E. Pol, Illustration for A008578, A161344, A161345 and A161424. [From _Omar E. Pol_, Oct 24 2009]
Crossrefs
Programs
-
Maple
isA := proc(n,s) if n mod s <> 0 then RETURN(false); fi; if n/s-s >= 0 then RETURN(true); else RETURN(false); fi; end: isA161345 := proc(n) for s from 4 to n do if isA(n,s) then RETURN(false); fi; od: isA(n,3) ; end: for n from 1 to 3000 do if isA161345(n) then printf("%d,",n) ; fi; od; # R. J. Mathar, Jun 24 2009
-
Mathematica
md3Q[n_]:=Max[Select[Divisors[n],#<=Sqrt[n]&]]==3; Select[Range[800],md3Q] (* Harvey P. Dale, Aug 12 2013 *)
Formula
Numbers k such that A033676(k)=3. - Omar E. Pol, Jul 05 2009
Extensions
Terms beyond a(10) from R. J. Mathar, Jun 24 2009
Definition added by R. J. Mathar, Jun 28 2009
Comments