A161483 Positive numbers y such that y^2 is of the form x^2+(x+151)^2 with integer x.
109, 151, 265, 389, 755, 1481, 2225, 4379, 8621, 12961, 25519, 50245, 75541, 148735, 292849, 440285, 866891, 1706849, 2566169, 5052611, 9948245, 14956729, 29448775, 57982621, 87174205, 171640039, 337947481, 508088501, 1000391459, 1969702265
Offset: 1
Keywords
Examples
(-60, a(1)) = (-60, 109) is a solution: (-60)^2+(-60+151)^2 = 3600+8281 = 11881 = 109^2. (A161482(1), a(2)) = (0, 151) is a solution: 0^2+(0+151)^2 = 22801 = 151^2. (A161482(3), a(4)) = (189, 389) is a solution: 189^2+(189+151)^2 = 35721+115600 = 151321 = 389^2.
Crossrefs
Programs
-
PARI
{forstep(n=-60, 100000000, [1, 3], if(issquare(2*n^2+302*n+22801, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=109, a(2)=151, a(3)=265, a(4)=389, a(5)=755, a(6)=1481.
G.f.: (1-x)*(109+260*x+525*x^2+260*x^3+109*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 151*A001653(k) for k >= 1.
Comments