cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161492 Triangle T(n,m) read by rows: the number of skew Ferrers diagrams with area n and m columns.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 8, 4, 1, 1, 9, 17, 13, 5, 1, 1, 12, 32, 34, 19, 6, 1, 1, 16, 55, 78, 58, 26, 7, 1, 1, 20, 89, 160, 154, 90, 34, 8, 1, 1, 25, 136, 305, 365, 269, 131, 43, 9, 1, 1, 30, 200, 544, 794, 716, 433, 182, 53, 10, 1, 1, 36, 284, 923, 1609, 1741, 1271, 657, 244, 64, 11, 1
Offset: 1

Views

Author

R. J. Mathar, Jun 11 2009

Keywords

Comments

Row sums give A006958, sums along falling diagonals give A227309. [Joerg Arndt, Mar 23 2014]
A coin fountain is an arrangement of coins in numbered rows such that the bottom row (row 0) contains contiguous coins and such that each coin in a higher row touches exactly two coins in the next lower row. See A005169. T(n,m) equals the number of coin fountains with exactly n coins in the even-numbered rows and n - m coins in the odd-numbered rows of the fountain. See the illustration in the Links section. - Peter Bala, Jul 21 2019

Examples

			T(4,2)=4 counts the following 4 diagrams with area equal to 4 and 2 columns:
   .X..XX...X..XX
   XX..XX...X..X.
   X.......XX..X.
From _Joerg Arndt_, Mar 23 2014: (Start)
Triangle begins:
01:  1
02:  1   1
03:  1   2    1
04:  1   4    3    1
05:  1   6    8    4     1
06:  1   9   17   13     5     1
07:  1  12   32   34    19     6     1
08:  1  16   55   78    58    26     7    1
09:  1  20   89  160   154    90    34    8   1
10:  1  25  136  305   365   269   131   43   9   1
11:  1  30  200  544   794   716   433  182  53  10  1
12:  1  36  284  923  1609  1741  1271  657 ...
(End)
		

Crossrefs

Row sums A006958. Cf. A005169, A227309.

Programs

  • Maple
    qpoch := proc(a,q,n)
        mul( 1-a*q^k,k=0..n-1) ;
    end proc:
    A161492 := proc(n,m)
        local N,N2,ns ;
        N := 0 ;
        for ns from 0 to n+2 do
            N := N+ (-1)^ns *q^binomial(ns+1,2) / qpoch(q,q,ns) / qpoch(q,q,ns+1) *q^(ns+1) *t^(ns+1) ;
            N := taylor(N,q=0,n+1) ;
        end do:
        N2 := 0 ;
        for ns from 0 to n+2 do
            N2 := N2+ (-1)^ns*q^binomial(ns,2)/(qpoch(q,q,ns))^2*q^ns*t^ns ;
            N2 := taylor(N2,q=0,n+1) ;
        end do:
        coeftayl(N/N2,q=0,n) ;
        coeftayl(%,t=0,m) ;
    end proc:
    for a from 1 to 20 do
        for c from 1 to a do
            printf("%d ", A161492(a,c)) ;
        od:
    od:
  • Mathematica
    nmax = 13;
    qn[n_] := Product[1 - q^k, {k, 1, n}];
    nm = Sum[(-1)^n q^(n(n+1)/2)/(qn[n] qn[n+1])(t q)^(n+1) + O[q]^nmax, {n, 0, nmax}];
    dn = Sum[(-1)^n q^(n(n-1)/2)/(qn[n]^2)(t q)^n + O[q]^nmax, {n, 0, nmax}];
    Rest[CoefficientList[#, t]]& /@ Rest[CoefficientList[nm/dn, q]] // Flatten (* Jean-François Alcover, Dec 19 2019, after Joerg Arndt *)
  • PARI
    /* formula from the Delest/Fedou reference: */
    N=20;  q='q+O('q^N);  t='t;
    qn(n) = prod(k=1, n, 1-q^k );
    nm = sum(n=0, N, (-1)^n* q^(n*(n+1)/2) / ( qn(n) * qn(n+1) ) * (t*q)^(n+1) );
    dn = sum(n=0, N, (-1)^n* q^(n*(n-1)/2) / ( qn(n)^2 ) * (t*q)^n );
    v=Vec(nm/dn);
    for(n=1,N-1,print(Vec(polrecip(Pol(v[n])))));  \\ print triangle
    \\ Joerg Arndt, Mar 23 2014

Formula

From Peter Bala, Jul 21 2019: (Start)
The following formulas all include an initial term T(0,0) = 1.
O.g.f. as a ratio of q-series: A(q,t) = N(q,t)/D(q,t) = 1 + q*t + q^2*(t + t^2) + q^3*(t + 2*t^2 + t^3) + ..., where N(q,t) = Sum_{n >= 0} (-1)^n*q^((n^2 + 3*n)/2)*t^n/Product_{k = 1..n} (1 - q^k)^2 and D(q,t) = Sum_{n >= 0} (-1)^n*q^((n^2 + n)/2)*t^n/Product_{k = 1..n} (1 - q^k)^2.
Continued fraction representations:
A(q,t) = 1/(1 - q*t/(1 - q/(1 - q^2*t/(1 - q^2/(1 - q^3*t/(1 - q^3/(1 - (...) ))))))).
A(q,t) = 1/(1 - q*t/(1 + q*(t - 1) - q*t/(1 + q*(t - q) - q*t/( 1 + q*(t - q^2) - q*t/( (...) ))))).
A(q,t) = 1/(1 - q*t - q^2*t/(1 - q*(1 + q*t) - q^4*t/(1 - q^2*(1 + q*t) - q^6*t/(1 - q^3*(1 + q*t) - q^8*t/( (...) ))))).
A(q,t) = 1/(1 - q*t - q^2*t/(1 - q^2*t - q/(1 - q^3*t - q^5*t/(1 - q^4*t - q^2/(1 - q^5*t - q^8*t/ (1 - q^6*t - q^3/(1 - q^7*t - q^11*t/(1 - q^8*t - (...) )))))))). (End)