A161517 Sum of remainders of c mod k where k = 1, 2, 3, ..., c and c is the n-th composite number.
1, 3, 8, 12, 13, 17, 31, 36, 36, 47, 61, 70, 77, 85, 103, 112, 125, 124, 138, 167, 184, 197, 218, 198, 248, 269, 258, 284, 328, 339, 358, 374, 414, 420, 449, 454, 492, 529, 520, 553, 578, 586, 672, 693, 693, 738, 725, 799, 840, 835, 852, 956, 981, 992, 1049, 1036
Offset: 1
Examples
a(1) = 1 (= (4 mod 3) + 0); a(2) = 3 (= (6 mod 5) + (6 mod 4) + 0 + 0); a(3) = 8 (= (8 mod 7) + (8 mod 6) + (8 mod 5) + 0 + (8 mod 3) + 0), etc.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A002808 := proc(n) local a; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a) ; end if; end do; end if; end proc: A004125 := proc(n) add( n mod k, k=1..n) ; end: A161517 := proc(n) local c; A004125( A002808(n)) ; end: seq(A161517(n),n=1..80) ; # R. J. Mathar, Aug 03 2009
-
Mathematica
With[{cmps=Select[Range[200],CompositeQ]},Table[Total[Mod[n,Range[n-1]]],{n,cmps}]] (* Harvey P. Dale, Apr 09 2023 *)
-
PARI
a(n)=my(c=n+n\log(n+1));for(i=0,n-c+primepi(c),if(isprime(c++),i--));sum(k=2,c,c%k) \\ Charles R Greathouse IV, Oct 12 2009
Formula
a(n) = (c mod (c-1)) + (c mod (c-2)) + ... + (c mod 3) + (c mod 2).
Extensions
Corrected and extended by R. J. Mathar, Aug 03 2009