A161584 The list of the k values in the common solutions to the 2 equations 13*k+1=A^2, 17*k+1=B^2.
0, 15, 3360, 749280, 167086095, 37259449920, 8308690246080, 1852800665425935, 413166239699737440, 92134218652376023200, 20545517593240153436175, 4581558289073901840243840, 1021666952945886870220940160
Offset: 1
Keywords
Links
- Index entries for linear recurrences with constant coefficients, signature (224, -224, 1).
Programs
-
Maple
t:=0: for n from 0 to 1000000 do a:=sqrt(13*n+1): b:=sqrt(17*n+1): if (trunc(a)=a) and (trunc(b)=b) then t:=t+1: print(t,n,a,b): end if: end do:
-
Mathematica
LinearRecurrence[{224,-224,1},{0,15,3360},20] (* Harvey P. Dale, Nov 22 2013 *)
Formula
k(t+3)=224*(k(t+2)-k(t+1))+k(t).
k(t)=((15+w)*((223+15*w)/2)^(t-1)+(15-w)*((223-15*w)/2)^(t-1))/442 where w=sqrt(221).
k(t) = floor of ((15+w)*((223+15*w)/2)^(t-1))/442;
G.f.: -15*x^2/((x-1)*(x^2-223*x+1)).
a(1)=0, a(2)=15, a(3)=3360, a(n)=224*a(n-1)-224*a(n-2)+a(n-3). - Harvey P. Dale, Nov 22 2013
Extensions
Edited, extended by R. J. Mathar, Sep 02 2009
Comments