A161606 a(n) = gcd(A008472(n), A001222(n)).
0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 5, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 1, 4, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3
Offset: 1
Keywords
Examples
28 has a prime-factorization of: 2^2 * 7^1. The sum of the distinct primes dividing 28 is 2+7 = 9. The sum of the exponents in the prime-factorization of 28 is 2+1 = 3. a(28) therefore equals gcd(9,3) = 3.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A008472 := proc(n) if n = 1 then 0 ; else add(p, p= numtheory[factorset](n)) ; end if ; end proc: A161606 := proc(n) igcd(A008472(n),numtheory[bigomega](n)) ; end proc: seq(A161606(n),n=2..80) ; # R. J. Mathar, Jul 08 2011
-
Mathematica
Table[GCD[DivisorSum[n, # &, PrimeQ], PrimeOmega@ n], {n, 105}] (* Michael De Vlieger, Jul 20 2017 *)
-
Python
from sympy import primefactors, gcd def a001222(n): return 0 if n==1 else a001222(n//primefactors(n)[-1]) + 1 def a(n): return gcd(sum(primefactors(n)), a001222(n)) print([a(n) for n in range(1, 151)]) # Indranil Ghosh, Jul 20 2017
-
Scheme
(define (A161606 n) (gcd (A001222 n) (A008472 n))) ;; Antti Karttunen, Jul 20 2017
Extensions
Term a(1)=0 prepended and more terms computed by Antti Karttunen, Jul 20 2017