cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161606 a(n) = gcd(A008472(n), A001222(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 5, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 1, 4, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Leroy Quet, Jun 14 2009

Keywords

Examples

			28 has a prime-factorization of: 2^2 * 7^1. The sum of the distinct primes dividing 28 is 2+7 = 9. The sum of the exponents in the prime-factorization of 28 is 2+1 = 3. a(28) therefore equals gcd(9,3) = 3.
		

Crossrefs

Programs

  • Maple
    A008472 := proc(n) if n = 1 then 0 ; else add(p, p= numtheory[factorset](n)) ; end if ; end proc:
    A161606 := proc(n) igcd(A008472(n),numtheory[bigomega](n)) ; end proc:
    seq(A161606(n),n=2..80) ; # R. J. Mathar, Jul 08 2011
  • Mathematica
    Table[GCD[DivisorSum[n, # &, PrimeQ], PrimeOmega@ n], {n, 105}] (* Michael De Vlieger, Jul 20 2017 *)
  • Python
    from sympy import primefactors, gcd
    def a001222(n): return 0 if n==1 else a001222(n//primefactors(n)[-1]) + 1
    def a(n): return gcd(sum(primefactors(n)), a001222(n))
    print([a(n) for n in range(1, 151)]) # Indranil Ghosh, Jul 20 2017
  • Scheme
    (define (A161606 n) (gcd (A001222 n) (A008472 n))) ;; Antti Karttunen, Jul 20 2017
    

Extensions

Term a(1)=0 prepended and more terms computed by Antti Karttunen, Jul 20 2017