A364980
E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x*A(x)^2).
Original entry on oeis.org
1, 1, 4, 33, 412, 6945, 147846, 3807601, 115151464, 4001162913, 157096369450, 6878742553881, 332361857826780, 17566215943990753, 1008161606338206334, 62440146891413434305, 4151012174991960338896, 294834882756167048975553
Offset: 0
-
Join[{1}, Table[n! * Sum[k^(n-k) * Binomial[2*n-k+1,k] / ((2*n-k+1)*(n-k)!), {k,0,n}], {n,1,20}]] (* Vaclav Kotesovec, Nov 18 2023 *)
-
a(n) = n!*sum(k=0, n, k^(n-k)*binomial(2*n-k+1, k)/((2*n-k+1)*(n-k)!));
A364938
E.g.f. satisfies A(x) = exp( x / (1 - x*A(x))^3 ).
Original entry on oeis.org
1, 1, 7, 73, 1141, 23821, 623341, 19650793, 725478601, 30714824377, 1467394945561, 78103975313101, 4583805610661245, 294093243091237669, 20479664124384110101, 1538423857251845781841, 124007828871708989798161, 10676865465119963987425009
Offset: 0
-
Join[{1}, Table[n! * Sum[(n-k+1)^(k-1) * Binomial[n+2*k-1,n-k]/k!, {k,0,n}], {n,1,20}]] (* Vaclav Kotesovec, Nov 18 2023 *)
-
a(n) = n!*sum(k=0, n, (n-k+1)^(k-1)*binomial(n+2*k-1, n-k)/k!);
A363744
E.g.f. satisfies A(x) = exp(x * (1 + x * A(x))^2).
Original entry on oeis.org
1, 1, 5, 31, 313, 3981, 63841, 1223419, 27378737, 701091001, 20221662241, 649032795951, 22945630163017, 886151307346501, 37121193546044609, 1676607954371120611, 81222976991097364321, 4201418329450141471473, 231127287514383805458625
Offset: 0
-
Join[{1}, Table[n! * Sum[(n-k+1)^(k-1) * Binomial[2*k,n-k]/k!, {k,0,n}], {n,1,20}]] (* Vaclav Kotesovec, Nov 18 2023 *)
-
a(n) = n!*sum(k=0, n, (n-k+1)^(k-1)*binomial(2*k, n-k)/k!);
A372200
E.g.f. A(x) satisfies A(x) = exp( 2 * x / (1 - x * A(x)^(1/2))^2 ).
Original entry on oeis.org
1, 2, 12, 116, 1600, 28832, 643864, 17190392, 534707296, 19003345568, 760054943464, 33798503960168, 1654577248619728, 88437537019736816, 5125378381513865752, 320163561707158120568, 21445740148760729672896, 1533498858453023915309888
Offset: 0
-
a(n, r=2, s=2, t=0, u=1) = r*n!*sum(k=0, n, (t*k+u*(n-k)+r)^(k-1)*binomial(n+(s-1)*k-1, n-k)/k!);
A382058
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^2), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 1, 5, 67, 1465, 44541, 1735681, 82527439, 4632741905, 299875704697, 21989097804961, 1801520077445331, 163092373817762137, 16168084561101716725, 1741946677697976052577, 202668693570279026375671, 25324088113475137179021601, 3382305512670022948599733233, 480858973986045019386825360577
Offset: 0
-
a(n) = if(n==0, 1, 2*n!*sum(k=0, n-1, (k+1)^(n-k-1)*binomial(2*n+k, k)/((2*n+k)*(n-k-1)!)));
Showing 1-5 of 5 results.