A161665 Primes that can be represented as a sum of 2 and also as a sum of 3 distinct nonzero squares, sharing a term in the sums.
29, 101, 109, 149, 173, 181, 229, 233, 241, 269, 293, 389, 401, 409, 421, 433, 449, 521, 569, 641, 661, 677, 701, 757, 761, 769, 797, 821, 857, 877, 881, 941, 1021, 1069, 1097, 1109, 1117, 1181, 1229, 1237, 1277, 1289, 1301, 1373, 1381, 1429, 1433, 1481, 1549
Offset: 1
Keywords
Examples
The prime 29 has the representations 29 = 2^2+ 5^2 = 2^2+3^2+4^2, sharing 2^2. The prime 101 has the representations 101 = 1^2+10^2 = 1^2+6^2+8^2, sharing 1^2. The prime 109 has the representations 109 = 3^2+10^2 = 3^2+6^2+8^2, sharing 3^2. The prime 149 has the representations 149 = 7^2+10^2 = 6^2+7^2+8^2, sharing 7^2.
Programs
-
Mathematica
f[n_]:=Module[{k=1},While[(n-k^2)^(1/2)!=IntegerPart[(n-k^2)^(1/2)],k++; If[2*k^2>=n,k=0;Break[]]];k]; lst={};Do[a=f[n];If[a>0,b=f[n-(f[n])^2]; If[b>0,c=(n-a^2-b^2)^(1/2);If[a!=b&&a!=c,If[PrimeQ[n],AppendTo[lst, n]]]]],{n,3,4*6!}];lst
Extensions
Definition reverse-engineered from program by R. J. Mathar, Oct 04 2009
Comments