cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161700 a(n) is the sum of the elements on the antidiagonal of the difference table of the divisors of n.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 13, 15, 19, 17, 21, 28, 25, 21, 41, 31, 33, 59, 37, 21, 53, 29, 45, 39, 61, 33, 65, 49, 57, 171, 61, 63, 77, 41, 117, 61, 73, 45, 89, -57, 81, 309, 85, 105, 167, 53, 93, -80, 127, 61, 113, 133, 105, 321, 173, 183, 125, 65, 117, -1039, 121, 69, 155, 127, 201, 333, 133, 189, 149, -69, 141, 117, 145, 81, 317, 217, 269
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 17 2009, Jun 20 2009

Keywords

Comments

a(p^k) = p^(k+1) - (p-1)^(k+1) if p is prime. - Robert Israel, May 18 2016

Examples

			n=12: A000005(12)=6;
EDP(12,x) = (x^5 - 5*x^4 + 5*x^3 + 5*x^2 + 114*x + 120)/120 = A161701(x) is the interpolating polynomial for {(0,1),(1,2),(2,3),(3,4),(4,6),(5,12)},
{EDP(12,x): 0<=x<6} = {1, 2, 3, 4, 6, 12} = divisors of 12,
a(12) = EDP(12,6) = 28.
From _Peter Luschny_, May 18 2016: (Start)
a(40) = -57 because the sum of the elements on the antidiagonal of DTD(40) is -57.
The DTD(40) is:
[   1    2    4   5  8  10  20  40]
[   1    2    1   3  2  10  20   0]
[   1   -1    2  -1  8  10   0   0]
[  -2    3   -3   9  2   0   0   0]
[   5   -6   12  -7  0   0   0   0]
[ -11   18  -19   0  0   0   0   0]
[  29  -37    0   0  0   0   0   0]
[ -66    0    0   0  0   0   0   0]
(End)
		

Crossrefs

Programs

  • Maple
    f:= proc(n)
    local D, nD;
    D:= sort(convert(numtheory:-divisors(n),list));
    nD:= nops(D);
    CurveFitting:-PolynomialInterpolation([$0..nD-1],D, nD)
    end proc:
    map(f, [$1..100]); # Robert Israel, May 18 2016
  • Mathematica
    a[n_] := (d = Divisors[n]; t = Table[Differences[d, k], {k, 0, lg = Length[d]}]; Sum[t[[lg - k + 1, k]], {k, 1, lg}]);
    Array[a, 77] (* Jean-François Alcover, Jan 25 2018 *)
  • Sage
    def A161700(n):
        D = divisors(n)
        T = matrix(ZZ, len(D))
        for (m, d) in enumerate(D):
            T[0, m] = d
            for k in range(m-1, -1, -1) :
                T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
        return sum(T[k,len(D)-k-1] for k in range(len(D)))
    print([A161700(n) for n in range(1,78)]) # Peter Luschny, May 18 2016

Formula

a(n) = EDP(n,tau(n)) with tau = A000005 and EDP(n,x) = interpolating polynomial for the divisors of n.
EDP(n,A000005(n) - 1) = n;
EDP(n,1) = A020639(n);
EDP(n,0) = 1;
EDP(n,k) = A027750(A006218(n-1)+k+1), 0<=k < A000005(n).

Extensions

New name from Peter Luschny, May 18 2016