A161700 a(n) is the sum of the elements on the antidiagonal of the difference table of the divisors of n.
1, 3, 5, 7, 9, 13, 13, 15, 19, 17, 21, 28, 25, 21, 41, 31, 33, 59, 37, 21, 53, 29, 45, 39, 61, 33, 65, 49, 57, 171, 61, 63, 77, 41, 117, 61, 73, 45, 89, -57, 81, 309, 85, 105, 167, 53, 93, -80, 127, 61, 113, 133, 105, 321, 173, 183, 125, 65, 117, -1039, 121, 69, 155, 127, 201, 333, 133, 189, 149, -69, 141, 117, 145, 81, 317, 217, 269
Offset: 1
Keywords
Examples
n=12: A000005(12)=6; EDP(12,x) = (x^5 - 5*x^4 + 5*x^3 + 5*x^2 + 114*x + 120)/120 = A161701(x) is the interpolating polynomial for {(0,1),(1,2),(2,3),(3,4),(4,6),(5,12)}, {EDP(12,x): 0<=x<6} = {1, 2, 3, 4, 6, 12} = divisors of 12, a(12) = EDP(12,6) = 28. From _Peter Luschny_, May 18 2016: (Start) a(40) = -57 because the sum of the elements on the antidiagonal of DTD(40) is -57. The DTD(40) is: [ 1 2 4 5 8 10 20 40] [ 1 2 1 3 2 10 20 0] [ 1 -1 2 -1 8 10 0 0] [ -2 3 -3 9 2 0 0 0] [ 5 -6 12 -7 0 0 0 0] [ -11 18 -19 0 0 0 0 0] [ 29 -37 0 0 0 0 0 0] [ -66 0 0 0 0 0 0 0] (End)
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Divisor
- Eric Weisstein's World of Mathematics, Finite Difference
- Reinhard Zumkeller, Enumerations of Divisors
Crossrefs
Cf. A000012, A000027, A005408, A000124, A016813, A086514, A016921, A000125, A058331, A002522, A017281, A161701, A017533, A161702, A161703, A000127, A158057, A161704, A161705, A161706, A161707, A161708, A161709, A161710, A080856, A161711, A161712, A161713, A161714, A161715, A128470, A006261.
Cf. A161856.
Programs
-
Maple
f:= proc(n) local D, nD; D:= sort(convert(numtheory:-divisors(n),list)); nD:= nops(D); CurveFitting:-PolynomialInterpolation([$0..nD-1],D, nD) end proc: map(f, [$1..100]); # Robert Israel, May 18 2016
-
Mathematica
a[n_] := (d = Divisors[n]; t = Table[Differences[d, k], {k, 0, lg = Length[d]}]; Sum[t[[lg - k + 1, k]], {k, 1, lg}]); Array[a, 77] (* Jean-François Alcover, Jan 25 2018 *)
-
Sage
def A161700(n): D = divisors(n) T = matrix(ZZ, len(D)) for (m, d) in enumerate(D): T[0, m] = d for k in range(m-1, -1, -1) : T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k] return sum(T[k,len(D)-k-1] for k in range(len(D))) print([A161700(n) for n in range(1,78)]) # Peter Luschny, May 18 2016
Formula
Extensions
New name from Peter Luschny, May 18 2016
Comments