A161747 Primes of the form x^5-y^4, where x,y >= 1.
31, 227, 1051, 3109, 7151, 15511, 18127, 30367, 32143, 32687, 144719, 151051, 165311, 186343, 234191, 302399, 369997, 371281, 374239, 407503, 454303, 509263, 531263, 537743, 759359, 1053007, 1088081, 1182287, 1185601, 1354321, 1381441
Offset: 1
Keywords
Examples
2^5 - 1^4 = 31.
Programs
-
PARI
diffpowers(n,m) = { local(a,c=0,c2=0,j,k,y); a=vector(floor(n^2/log(n^2))); for(j=1,n, for(k=1,n, y=j^m-k^(m-1); if(ispseudoprime(y), c++; \\ print(j","k","y); a[c]=y; ); ); ); a=vecsort(a); for(j=2,length(a), if(a[j]!=a[j-1]&&a[j]!=0, c2++; print1(a[j]","); if(c2>100,break); ); ); }
Formula
If x^5-y^4 is prime for integers x,y list without duplicates.
Comments