A161779 The sequence of factorials convolved with all its regularly "aerated" variants.
1, 1, 3, 8, 30, 133, 768, 5221, 41302, 369170, 3677058, 40338310, 483134179, 6271796072, 87709287104, 1314511438945, 21017751750506, 357102350816602, 6424883282375340, 122025874117476166, 2439726373093186274, 51220112287152570828, 1126575412217509969515
Offset: 0
Keywords
Examples
Let the partial products = a, a*b, a*b*c,..., with the first few rows = (1, 1, 2, 6, 24, 120,...) = a (1, 1, 3, 7, 28, 128,...) = a*b (1, 1, 3, 8, 29, 131,...) = a*b*c (1, 1, 3, 8, 30, 132,...) = a*b*c*d ...converging to A161779
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..449
Programs
-
Maple
read("transforms3") ; read("transforms") ; A161779 := proc(N) local a000142,res,n,j ; a000142 := [seq(n!,n=0..N)] ; res := [seq(op(n,a000142),n=1..N)] ; for j from 1 to N do res := CONV( res, AERATE(a000142,j)) ; od: [seq(op(n,res),n=1..N)] end: A161779(30) ; # R. J. Mathar, Jun 23 2009 # second Maple program: b:= proc(n, i) option remember; `if`(n=0 or i=1, n!, add(b(n-i*j, i-1)*j!, j=0..n/i)) end: a:= n-> b(n$2): seq(a(n), n=0..25); # Alois P. Heinz, Oct 03 2018, revised, Mar 05 2024
-
Mathematica
b[n_, i_] := b[n, i] = If[i>n, 0, If[Mod[n, i] == 0, (n/i)!, 0] + Sum[j! b[n - i j, i + 1], {j, 0, n/i}]]; a[n_] := If[n == 0, 1, b[n, 1]]; a /@ Range[0, 25] (* Jean-François Alcover, Feb 04 2020, after Alois P. Heinz *)
Formula
a(n) = A096161(n) for n >= 1. - R. J. Mathar, Jun 26 2009
a(n) ~ n! * (1 + 1/n^2 + 2/n^3 + 7/n^4 + 28/n^5 + 121/n^6 + 587/n^7 + 3205/n^8 + 19201/n^9 + 123684/n^10), for coefficients see A293266. - Vaclav Kotesovec, Oct 04 2017
Extensions
Extended by R. J. Mathar, Jun 23 2009
Comments