A161789 a(n) is the largest integer k such that 2^k - 1 divides n.
1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 3, 4, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 3, 1, 4, 5, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 4, 1, 5, 6, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 4, 1, 3, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 4, 3, 1, 5, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 4
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A161789 := proc(n) for k from ilog2(n+1) to 0 by -1 do if n mod (2^k-1) = 0 then RETURN(k); fi; od: end: seq(A161789(n),n=1..120) ; # R. J. Mathar, Jun 27 2009 # Alternative: N:= 200: # for a(1)..a(N) V:= Vector(N,1): for k from 2 to ilog2(N) do t:= 2^k-1; V[[seq(i,i=t..N,t)]]:= k od: convert(V,list); # Robert Israel, May 12 2020
-
Mathematica
kn[n_]:=Module[{k=Floor[Log[2,n]]+1},While[!Divisible[n,2^k-1],k--];k]; Array[kn,110] (* Harvey P. Dale, Mar 26 2012 *)
-
PARI
a(n)=forstep(k=logint(n+1,2),1,-1, if(n%(2^k-1)==0, return(k))) \\ Charles R Greathouse IV, Aug 25 2017
Formula
A161788(n) = 2^a(n) - 1.
a(A161790(n)) = 1.
Conjecture: gcd(n, m) = a(2^n + 2^m - 2) for n > 0 and m > 0. - Velin Yanev, Aug 24 2017
Extensions
Extended by R. J. Mathar, Jun 27 2009
Comments