cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161789 a(n) is the largest integer k such that 2^k - 1 divides n.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 3, 4, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 3, 1, 4, 5, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 4, 1, 5, 6, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 4, 1, 3, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 4, 3, 1, 5, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 4
Offset: 1

Views

Author

Leroy Quet, Jun 19 2009

Keywords

Comments

The sums of the first 10^k terms, for k = 1, 2, ..., are 15, 183, 1898, 19219, 192464, 1924900, 19249110, 192491275, 1924913468, 19249135108, ... . Apparently, the asymptotic mean of this sequence is 1.924913... . - Amiram Eldar, Jun 30 2025

Crossrefs

Programs

  • Maple
    A161789 := proc(n) for k from ilog2(n+1) to 0 by -1 do if n mod (2^k-1) = 0 then RETURN(k); fi; od: end: seq(A161789(n),n=1..120) ; # R. J. Mathar, Jun 27 2009
    # Alternative:
    N:= 200: # for a(1)..a(N)
    V:= Vector(N,1):
    for k from 2 to ilog2(N) do
      t:= 2^k-1;
      V[[seq(i,i=t..N,t)]]:= k
    od:
    convert(V,list); # Robert Israel, May 12 2020
  • Mathematica
    kn[n_]:=Module[{k=Floor[Log[2,n]]+1},While[!Divisible[n,2^k-1],k--];k]; Array[kn,110] (* Harvey P. Dale, Mar 26 2012 *)
  • PARI
    a(n)=forstep(k=logint(n+1,2),1,-1, if(n%(2^k-1)==0, return(k))) \\ Charles R Greathouse IV, Aug 25 2017

Formula

A161788(n) = 2^a(n) - 1.
a(A161790(n)) = 1.
Conjecture: gcd(n, m) = a(2^n + 2^m - 2) for n > 0 and m > 0. - Velin Yanev, Aug 24 2017

Extensions

Extended by R. J. Mathar, Jun 27 2009