cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161804 G.f.: A(q) = exp( Sum_{n>=1} A002129(n) * 3*A038500(n) * q^n/n ).

Original entry on oeis.org

1, 3, 3, 12, 30, 27, 66, 141, 111, 255, 513, 378, 903, 1815, 1356, 2970, 5727, 4131, 8571, 15882, 10881, 23001, 42417, 29106, 59763, 108165, 73500, 145164, 255831, 167643, 333693, 585258, 382053, 751059, 1302966, 849339, 1623009, 2762349
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2009

Keywords

Comments

A002129 forms the l.g.f. of log[ Sum_{n>=0} x^(n(n+1)/2) ], while 3*A038500 forms the l.g.f. of the log of the g.f. of A161809 and A038500(n) is the highest power of 3 dividing n.

Examples

			G.f.: A(q) = 1 + 3*q + 3*q^2 + 12*q^3 + 30*q^4 + 27*q^5 + 66*q^6 + ...
log(A(q)) = 3*q - 3*q^2 + 36*q^3 - 15*q^4 + 18*q^5 - 36*q^6 + 24*q^7 + ...
Sum_{n>=1} A002129(n)*q^n/n = log(1 + q + q^3 + q^6 + q^10 + q^15 + ...),
Sum_{n>=1} 3*A038500(n)*x^n/n = log of the g.f. of A161809.
TRISECTIONS:
T_0(q) = 1 + 12*q + 66*q^2 + 255*q^3 + 903*q^4 + 2970*q^5 + ... (A161805)
T_1(q) = 3 + 30*q + 141*q^2 + 513*q^3 + 1815*q^4 + 5727*q^5 + ... (A161806)
T_2(q) = 3 + 27*q + 111*q^2 + 378*q^3 + 1356*q^4 + 4131*q^5 + ... (A161807)
where T_1(-q)/T_0(-q)/3 equals (cf. A132977):
1 + 2*q + 5*q^2 + 12*q^3 + 26*q^4 + 50*q^5 + 92*q^6 + 168*q^7 + ...
and T_2(-q)/T_0(-q)/3 equals (cf. A132978):
1 + 3*q + 7*q^2 + 15*q^3 + 32*q^4 + 63*q^5 + 114*q^6 + 201*q^7 + ...
also, T_2(q)/T_1(q) equals (cf. A092848):
1 - q + 2*q^3 - 2*q^4 - q^5 + 4*q^6 - 4*q^7 - q^8 + 8*q^9 - 8*q^10 + ...
		

Crossrefs

Cf. trisections: A161805 (T_0), A161806 (T_1), A161807 (T_2).
Cf. A132977 (T_1/T_0), A132978 (T_2/T_0), A092848 (T_2/T_1).
Cf. A002129, A038500, A161809, A161800 (variant).

Programs

  • PARI
    {a(n)=local(L=sum(m=1, n,3*3^valuation(m,3)*sumdiv(m, d, -(-1)^d*d)*x^m/m)+x*O(x^n)); polcoeff(exp(L), n)}

Formula

Given trisections where A(q) = T_0(q^3) + q*T_1(q^3) + q^2*T_2(q^3):
T_0(q) = Sum_{n>=0} a(3n)*q^n,
T_1(q) = Sum_{n>=0} a(3n+1)*q^n,
T_2(q) = Sum_{n>=0} a(3n+2)*q^n,
then it appears that:
T_1(-q)/T_0(-q) = 3*q^(-1/3)*(eta(q^6)^4/(eta(q)*eta(q^3)*eta(q^4)*eta(q^12)))^2 (Cf. A132977);
T_2(-q)/T_0(-q) = 3*q^(-2/3)*(eta(q^2)*eta(q^6))^2*eta(q^3)*eta(q^12)/(eta(q)*eta(q^4))^3 (cf. A132978);
T_2(q)/T_1(q) = g.f. of A092848, the reciprocal of Hauptmodul for Gamma_0(18).