cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161807 A trisection of A161804: a(n) = A161804(3n+2) for n>=0.

Original entry on oeis.org

3, 27, 111, 378, 1356, 4131, 10881, 29106, 73500, 167643, 382053, 849339, 1754061, 3605094, 7330311, 14094945, 26980563, 51481332, 93965784, 170910270, 311155296, 545970024, 955201653, 1676274750, 2849709768, 4831999623
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2009

Keywords

Comments

G.f. of A161804 is exp( Sum_{n>=1} A002129(n) * 3*A038500(n) * q^n/n ),
where A002129 forms the l.g.f. of log[ Sum_{n>=0} x^(n(n+1)/2) ], and
A038500(n) is the highest power of 3 dividing n.

Examples

			G.f.: T_2(q) = 3 + 27*q + 111*q^2 + 378*q^3 + 1356*q^4 + 4131*q^5 +...
Terms are divisible by 3:
A/3=[1,9,37,126,452,1377,3627,9702,24500,55881,127351,283113,...].
		

Crossrefs

Cf. A161804, other trisections: A161805 (T_0), A161806 (T_1).

Programs

  • PARI
    {a(n)=local(L=sum(m=1, 3*n+2,3*3^valuation(m,3)*sumdiv(m, d, -(-1)^d*d)*x^m/m)+x*O(x^(3*n+2))); polcoeff(exp(L), 3*n+2)}