A161842 Partial sums of A161841.
2, 4, 6, 10, 12, 16, 18, 22, 26, 30, 32, 38, 40, 44, 48, 54, 56, 62, 64, 70, 74, 78, 80, 88, 92, 96, 100, 106, 108, 116, 118, 124, 128, 132, 136, 146, 148, 152, 156, 164, 166, 174, 176, 182, 188, 192, 194, 204, 208, 214, 218, 224, 226, 234, 238, 246
Offset: 1
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- Michael Penn, This is always even??, YouTube video, 2020.
Programs
-
Mathematica
Accumulate[2*Ceiling[DivisorSigma[0, Range[100]]/2]] (* Paolo Xausa, Feb 05 2025 *)
-
PARI
a(n) = sum(i=1, n, floor(n/i)) + sqrtint(n) \\ David A. Corneth, Dec 17 2020
-
PARI
first(n) = {my(res = vector(n), t = 0); for(i = 1, n, t+=(numdiv(i)+issquare(i)); res[i] = t ); res } \\ David A. Corneth, Dec 17 2020
Formula
a(n) = 2*A094820(n).
a(n) = Sum_{i=1..n} (1 + A008836(i))*floor(n/i). - Enrique Pérez Herrero, Jul 10 2012
a(n) ~ (log(n) + 2*gamma - 1)*n + sqrt(n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 01 2021