cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161849 a(n) = A052369(n) mod A056608(n).

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 3, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 6, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 0, 1, 2, 1, 0, 1, 0, 1, 1, 1, 5, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 20 2009

Keywords

Comments

(Largest prime divisor) modulo (smallest prime divisor) of n-th composite number.

Examples

			a(1) = 0 = 2 mod 2;
a(2) = 1 = 3 mod 2;
a(3) = 0 = 2 mod 2;
a(4) = 0 = 3 mod 3;
a(5) = 1 = 5 mod 2.
		

Crossrefs

Programs

  • Magma
    [ D[ #D] mod D[1]: n in [2..140] | not IsPrime(n) where D is PrimeDivisors(n) ]; // Klaus Brockhaus, Jun 24 2009
  • Maple
    A002808 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a) : fi; od: fi; end:
    A006530 := proc(n) local u: if n=1 then 1 else u:= numtheory[factorset](n): max(seq(u[j], j=1..nops(u))) end if end:
    A020639 := proc(n) local u: if n=1 then 1 else u:= numtheory[factorset](n): min(seq(u[j], j=1..nops(u))) end if end:
    A052369 := proc(n) A006530(A002808(n)) ; end:
    A056608 := proc(n) A020639(A002808(n)) ; end:
    A161849 := proc(n) A052369(n) mod A056608(n) ; end: seq(A161849(n),n=1..120) ; # R. J. Mathar, Jun 23 2009
  • Mathematica
    Composite[n_] := FixedPoint[n + PrimePi[#] + 1&, n + PrimePi[n] + 1];
    a[n_] := With[{f = FactorInteger[Composite[n]]}, f[[-1, 1]]~Mod~f[[1, 1]]];
    Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Oct 15 2023 *)

Extensions

a(102) corrected by R. J. Mathar, Jun 23 2009