A161869 Convergent of an infinite product of Pascal's triangles aerated by rows.
1, 1, 2, 4, 8, 16, 33, 71, 160, 376, 912, 2256, 5633, 14093, 35170, 87344, 215680, 529568, 1293633, 3146515, 7627208, 18441476, 44510160, 107310480, 258566402, 622900466, 1500717220, 3616471960, 8717948688, 21023129472, 50713990918, 122374025914, 295366777856
Offset: 0
Examples
Pascal(1) Pascal(2) Pascal(3) 1 1 1 1 1 0 0 0 0 1 2 1 1 1 0 0 0 0 1 3 3 1 0 0 0 0 1 1 0 0 1 4 6 4 1 1 2 1 0 0 0 0 0 0 0 ... First columns of Pascal(1): 1, 1, 1, 1, 1, 1, 1, 1,... Pascal(1)*Pascal(2): 1, 1, 2, 4, 8, 16, 32, 64,... Pascal(1)*Pascal(2)*Pascal(3): 1, 1, 2, 4, 8, 16, 33, 71,... Pascal(1)*Pascal(2)*Pascal(3)*Pascal(4): 1, 1, 2, 4, 8, 16, 33, 71,... ... converging to A161869.
Programs
-
Maple
#A161869 #define aerated Pascal matrices (note indexing starts at 1) Pascal := proc (n) local i, j, r; Matrix(33, 33, (i, j) -> (product(r-(mod(i-1, n)), r = 1 .. n-1))*binomial(floor((i-1)/n), j-1) )/factorial(n-1) end proc: #it suffices to take the product of the first four aerated #Pascal arrays to get 33 correct terms of the sequence seq((Pascal(1).Pascal(2).Pascal(3).Pascal(4))(n, 1), n = 1 .. 33); # Peter Bala, Jul 07 2015
Formula
From Peter Bala, Jul 07 2015: (Start)
Construct an infinite set of Pascal's triangles aerated by rows, denoted Pascal(1), Pascal(2), ..., where Pascal(1) = A007318, Pascal(2) is an aerated version of Pascal(1) with alternate rows 1, 3, 5, ... set equal to (0, 0, 0, ...), Pascal(3) is a further aeration of Pascal(1) with now two adjacent rows set equal to (0, 0, 0, ...), and so on.
The infinite product Pascal(1)*Pascal(2)*Pascal(3)*... is well-defined. This sequence is the first column of the infinite product - all the other entries in the product are zero. (End)
Extensions
Terms a(12) through a(32) added by Peter Bala, Jul 07 2015
Comments