A161918 Numbers n such that the sum of the divisors minus the sum of the prime factors (counted with multiplicity) is equal to n+1.
6, 8, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 201, 202, 203
Offset: 1
Examples
n=21: Sum_divisors (1,3,7,21) = 32; Sum_prime_factors (3,7) = 10 -> 32-10 = 22. n=55: Sum_divisors (1,5,11,55) = 72; Sum_prime_factors (5,11) = 16 -> 72-16 = 56.
Links
- Jayanta Basu, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory); P:=proc(i) local b,c,j,s,n; for n from 2 by 1 to i do b:=(convert(ifactors(n),`+`)-1); c:=nops(b); j:=0; s:=0; for j from c by -1 to 1 do s:=s+convert(b[j],`*`); od; if n=sigma(n)-s-1 then print(n); fi; od; end: P(500);
-
Mathematica
Select[Range[203], DivisorSigma[1, #] - Total[Times @@@ FactorInteger[#]] == # + 1 &] (* Jayanta Basu, Aug 11 2013 *)
-
PARI
\\ from M. F. Hasler isA161918(n)={ n+1 == sigma(n)-(n=factor(n))[,1]~*n[,2] } for(n=1,500, isA161918(n)&print1(n","))
Extensions
Edited by N. J. A. Sloane, Jun 27 2009 incorporating suggestions from R. J. Mathar, M. F. Hasler, Benoit Jubin and others.
Comments