A161943 Number of different equations that can be made by summing numbers from 1 to n and using every number not more than once.
0, 0, 1, 3, 7, 17, 43, 108, 273, 708, 1867, 4955, 13256, 35790, 97340, 266240, 732014, 2022558, 5612579, 15634288, 43702232, 122550885, 344661924, 971908613, 2747404212, 7784038617, 22100387619, 62869809733, 179173559128, 511497066733, 1462522478549, 4188024794407
Offset: 1
Keywords
Examples
a(3) = 1, as the only equation we can make by summing numbers from the set {1, 2, 3} is 1+2=3. a(4) = 3, as we can make three equations: 1+2=3, 1+3=4, 1+4=2+3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..940
Crossrefs
Column k=2 of A196231.
Programs
-
Maple
b:= proc(n, i) option remember; local m; m:= i*(i+1)/2; if n>m then 0 elif n=m then 1 else b(n, i-1) +b(abs(n-i), i-1) +b(n+i, i-1) fi end: a:= proc(n) option remember; `if`(n>2, b(n, n-1)+ a(n-1), 0) end: seq(a(n), n=1..40); # Alois P. Heinz, Aug 31 2009, revised Sep 16 2011
-
Mathematica
Table[(Length[ Select[Range[0, 3^n - 1], Apply[Plus, Pick[Range[n], PadLeft[IntegerDigits[ #, 3], n], 1]] == Apply[Plus, Pick[Range[n], PadLeft[IntegerDigits[ #, 3], n], 2]] &]] - 1)/ 2, {n, 14}]
Formula
a(n) ~ 3^(n+1) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 11 2014
Extensions
More terms from Alois P. Heinz, Aug 31 2009
Comments