A161948 Base-11 Armstrong or narcissistic numbers (written in base 10).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 61, 72, 126, 370, 855, 1161, 1216, 1280, 10657, 16841, 16842, 17864, 17865, 36949, 36950, 63684, 66324, 71217, 90120, 99594, 99595, 141424, 157383, 1165098, 1165099, 5611015, 11959539, 46478562, 203821954, 210315331, 397800208, 826098079, 1308772162, 1399714480
Offset: 1
Examples
16841 = 11720_11 (= 1*11^4 + 1*11^3 + 7*11^2 + 2*11^1 + 0*11^0) = 1^5 + 1^5 + 7^5 + 2^5 + 0^5. It's easy to see that 16841 + 1 then also satisfies this relation, as for all terms that are multiples of 11. - _M. F. Hasler_, Nov 20 2019
Links
- Joseph Myers, Table of n, a(n) for n = 1..134 (the full list of terms, from Winter)
- Henk Koppelaar and Peyman Nasehpour, On Hardy's Apology Numbers, arXiv:2008.08187 [math.NT], 2020.
- Eric Weisstein's World of Mathematics, Narcissistic Number
- D. T. Winter, Table of Armstrong Numbers
Crossrefs
Programs
-
Mathematica
Select[Range[10^7], # == Total[IntegerDigits[#, 11]^IntegerLength[#, 11]] &] (* Michael De Vlieger, Nov 04 2020 *)
-
PARI
select( {is_A161948(n)=n==vecsum([d^#n|d<-n=digits(n,11)])}, [0..10^5]) \\ This gives only terms < 10^5, for illustration of is_A161948(). - M. F. Hasler, Nov 20 2019
Comments