cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A161968 E.g.f. L(x) satisfies: L(x) = x*exp(x*d/dx L(x)), where L(x) is the logarithm of e.g.f. of A161967.

Original entry on oeis.org

1, 2, 15, 232, 5905, 220176, 11210479, 743759360, 62179950753, 6387468716800, 790466735915791, 115974842104378368, 19906425428056709425, 3952505003715017695232, 899034956269244372091375, 232282033898506324396343296, 67660142460130946247667502401
Offset: 1

Views

Author

Paul D. Hanna, Jun 23 2009

Keywords

Examples

			E.g.f.: L(x) = x + 2*x^2/2! + 15*x^3/3! + 232*x^4/4! + 5905*x^5/5! +...
where exp(L(x)) = exp(x*exp(x*L'(x))) = e.g.f. of A161967:
exp(L(x)) = 1 + x + 3*x^2/2! + 22*x^3/3! + 317*x^4/4! + 7596*x^5/5! +...
and exp(x*L'(x)) = 1 + x + 5*x^2/2! + 58*x^3/3! + 1181*x^4/4! + 36696*x^5/5! +...+ A156326(n)*x^n/n! +...
RELATED EXPRESSIONS.
E.g.f.: A(x) = 1 + 2*x + 15*x^2/2! + 232*x^3/3! + 5905*x^4/4! +...
where
A(x) = d/dx x*exp(x*A(x)) = exp(x*A(x)) * (1 + x*A(x) + x^2*A'(x)) with
exp(x*A(x)) = 1 + x + 5*x^2/2! + 58*x^3/3! + 1181*x^4/4! + 36696*x^5/5! + 1601497*x^6/6! + 92969920*x^7/7! +...+ A156326(n)*x^n/n! +...
		

Crossrefs

Cf. A161967 (exp), A156326.

Programs

  • PARI
    {a(n)=local(L=x+x^2);for(i=1,n,L=x*exp(x*deriv(L)+O(x^n)));n!*polcoeff(L,n)}
    for(n=1,30,print1(a(n),", "))

Formula

a(n) = n * A156326(n-1), where the e.g.f. of A156326 satisfies: Sum_{n>=0} A156326(n)*x^n/n! = exp( Sum_{n>=1} n^2 * A156326(n-1)*x^n/n! ) = exp( Sum_{n>=1} n * a(n)*x^n/n! ). - Paul D. Hanna, Feb 21 2014
E.g.f. A(x), with offset=0, satisfies [Paul D. Hanna, Feb 15 2015]:
(1) A(x) = d/dx x*exp(x*A(x)).
(2) A(x) = exp(x*A(x)) * (1 + x*A(x) + x^2*A'(x)).
(3) exp(x*A(x)) = e.g.f. of A156326.

A193332 E.g.f. satisfies: A(x) = x*exp( A(x)/A'(x) ).

Original entry on oeis.org

1, 2, -3, 52, -1315, 50286, -2655863, 183322952, -15928677063, 1695597280570, -216636191518219, 32688113040335292, -5749136647259226923, 1165789270581830003942, -270019628802455686919295, 70862777375461690495134736, -20921819854506620454336189583
Offset: 1

Views

Author

Paul D. Hanna, Jul 23 2011

Keywords

Examples

			E.g.f.: A(x) = x + 2*x^2/2! - 3*x^3/3! + 52*x^4/4! - 1315*x^5/5! + 50286*x^6/6! - 2655863*x^7/7! + 183322952*x^8/8! +...
where A(x)/A'(x) = log(A(x)/x) equals the integer series:
(1) A(x)/A'(x) = x - x^2 + 3*x^3 - 14*x^4 + 85*x^5 - 621*x^6 + 5236*x^7 - 49680*x^8 + 521721*x^9 - 5994155*x^10 +...
which equals -G(-x) where G(x) is the g.f. of A088716.
The series reversion, -L(-x), begins:
(2) -L(-x) = x - 2*x^2/2! + 15*x^3/3! - 232*x^4/4! + 5905*x^5/5! - 220176*x^6/6! + 11210479*x^7/7! - 743759360*x^8/8! +...
where L(x) is the e.g.f. A161968.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x*exp(A/(A'+x*O(x^n))));n!*polcoeff(A,n)}

Formula

E.g.f. A(x) satisfies:
(1) A(x)/A'(x) = -G(-x) where G(x) = x + x*G(x)*G'(x) is a g.f. of A088716; thus, log(A(x)/x) is an integer series.
(2) A(-L(-x)) = x where L(x) = x*exp(x*L'(x)) is the e.g.f. of A161968.
a(n) ~ c * (-1)^n * (n!)^2, where c = 0.217950789447151065... (see A238223). - Vaclav Kotesovec, Feb 26 2014

A161971 E.g.f. satisfies: A(x) = exp( x*exp( x*A'(x) ) ), where A'(x) = d/dx A(x).

Original entry on oeis.org

1, 1, 3, 28, 521, 15596, 672457, 39049396, 2919995969, 272314100944, 30921124212881, 4195725816103724, 670156359448985521, 124435720115244671056, 26578720273153614206201
Offset: 0

Views

Author

Paul D. Hanna, Jun 23 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 28*x^3/3! + 521*x^4/4! + 15596*x^5/5! +...
exp(x*A'(x)) = 1 + x + 7*x^2/2! + 103*x^3/3! + 2565*x^4/4! + 94881*x^5/5! +...
where log(A(x)) = x*exp(x*A'(x)):
log(A(x)) = x + 2*x^2/2! + 21*x^3/3! + 412*x^4/4! + 12825*x^5/5! + 569286*x^6/6! +...
		

Crossrefs

Cf. A161967 (variant).

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(x*exp(x*deriv(A)+O(x^n))));n!*polcoeff(A,n)}

Formula

a(n) ~ c * n * (n!)^2, where c = 0.2773256592699... - Vaclav Kotesovec, Aug 24 2017
Showing 1-3 of 3 results.