cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161968 E.g.f. L(x) satisfies: L(x) = x*exp(x*d/dx L(x)), where L(x) is the logarithm of e.g.f. of A161967.

Original entry on oeis.org

1, 2, 15, 232, 5905, 220176, 11210479, 743759360, 62179950753, 6387468716800, 790466735915791, 115974842104378368, 19906425428056709425, 3952505003715017695232, 899034956269244372091375, 232282033898506324396343296, 67660142460130946247667502401
Offset: 1

Views

Author

Paul D. Hanna, Jun 23 2009

Keywords

Examples

			E.g.f.: L(x) = x + 2*x^2/2! + 15*x^3/3! + 232*x^4/4! + 5905*x^5/5! +...
where exp(L(x)) = exp(x*exp(x*L'(x))) = e.g.f. of A161967:
exp(L(x)) = 1 + x + 3*x^2/2! + 22*x^3/3! + 317*x^4/4! + 7596*x^5/5! +...
and exp(x*L'(x)) = 1 + x + 5*x^2/2! + 58*x^3/3! + 1181*x^4/4! + 36696*x^5/5! +...+ A156326(n)*x^n/n! +...
RELATED EXPRESSIONS.
E.g.f.: A(x) = 1 + 2*x + 15*x^2/2! + 232*x^3/3! + 5905*x^4/4! +...
where
A(x) = d/dx x*exp(x*A(x)) = exp(x*A(x)) * (1 + x*A(x) + x^2*A'(x)) with
exp(x*A(x)) = 1 + x + 5*x^2/2! + 58*x^3/3! + 1181*x^4/4! + 36696*x^5/5! + 1601497*x^6/6! + 92969920*x^7/7! +...+ A156326(n)*x^n/n! +...
		

Crossrefs

Cf. A161967 (exp), A156326.

Programs

  • PARI
    {a(n)=local(L=x+x^2);for(i=1,n,L=x*exp(x*deriv(L)+O(x^n)));n!*polcoeff(L,n)}
    for(n=1,30,print1(a(n),", "))

Formula

a(n) = n * A156326(n-1), where the e.g.f. of A156326 satisfies: Sum_{n>=0} A156326(n)*x^n/n! = exp( Sum_{n>=1} n^2 * A156326(n-1)*x^n/n! ) = exp( Sum_{n>=1} n * a(n)*x^n/n! ). - Paul D. Hanna, Feb 21 2014
E.g.f. A(x), with offset=0, satisfies [Paul D. Hanna, Feb 15 2015]:
(1) A(x) = d/dx x*exp(x*A(x)).
(2) A(x) = exp(x*A(x)) * (1 + x*A(x) + x^2*A'(x)).
(3) exp(x*A(x)) = e.g.f. of A156326.