cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A161850 Subsequence of A161986 consisting of all terms that are prime.

Original entry on oeis.org

7, 11, 13, 17, 19, 23, 29, 31, 37, 37, 41, 43, 47, 47, 53, 53, 59, 61, 67, 71, 71, 73, 79, 83, 89, 89, 97, 97, 101, 101, 103, 107, 109, 113, 127, 131, 137, 137, 139, 149, 149, 151, 157, 163, 163, 167, 167, 173, 179, 179, 181, 193, 191, 193, 197, 199, 211, 223, 227
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 20 2009

Keywords

Comments

A161986(n) = k+r where k is n-th composite and r is remainder of (largest prime divisor of k) divided by (smallest prime divisor k).

Examples

			A161986(1) to A161986(27) are 4, 7, 8, 9, 11, 13, 15, 17, 16, 19, 21, 22, 23, 25, 25, 27, 27, 29, 31, 32, 35, 35, 37, 37, 39, 40, 41. Hence a(1) to a(11) are the prime terms among them, namely 7, 11, 13, 17, 19, 23, 29, 31 ,37, 37, 41.
		

Crossrefs

Cf. A161986 (A002808(n)+A161849(n)), A002808 (composite numbers), A161849 (A052369(n) mod A056608(n)), A052369 (largest prime factor of n-th composite), A056608 (smallest divisor of n-th composite).

Programs

  • Magma
    [ p: n in [2..230] | not IsPrime(n) and IsPrime(p) where p is n+D[ #D] mod D[1] where D is PrimeDivisors(n) ];

Extensions

Edited and corrected (a(19)=57 replaced by 67; a(38)=137, a(49)=179, a(50)=179 inserted) by Klaus Brockhaus, Jun 24 2009

A161849 a(n) = A052369(n) mod A056608(n).

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 3, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 6, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 0, 1, 2, 1, 0, 1, 0, 1, 1, 1, 5, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 20 2009

Keywords

Comments

(Largest prime divisor) modulo (smallest prime divisor) of n-th composite number.

Examples

			a(1) = 0 = 2 mod 2;
a(2) = 1 = 3 mod 2;
a(3) = 0 = 2 mod 2;
a(4) = 0 = 3 mod 3;
a(5) = 1 = 5 mod 2.
		

Crossrefs

Programs

  • Magma
    [ D[ #D] mod D[1]: n in [2..140] | not IsPrime(n) where D is PrimeDivisors(n) ]; // Klaus Brockhaus, Jun 24 2009
  • Maple
    A002808 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a) : fi; od: fi; end:
    A006530 := proc(n) local u: if n=1 then 1 else u:= numtheory[factorset](n): max(seq(u[j], j=1..nops(u))) end if end:
    A020639 := proc(n) local u: if n=1 then 1 else u:= numtheory[factorset](n): min(seq(u[j], j=1..nops(u))) end if end:
    A052369 := proc(n) A006530(A002808(n)) ; end:
    A056608 := proc(n) A020639(A002808(n)) ; end:
    A161849 := proc(n) A052369(n) mod A056608(n) ; end: seq(A161849(n),n=1..120) ; # R. J. Mathar, Jun 23 2009
  • Mathematica
    Composite[n_] := FixedPoint[n + PrimePi[#] + 1&, n + PrimePi[n] + 1];
    a[n_] := With[{f = FactorInteger[Composite[n]]}, f[[-1, 1]]~Mod~f[[1, 1]]];
    Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Oct 15 2023 *)

Extensions

a(102) corrected by R. J. Mathar, Jun 23 2009
Showing 1-2 of 2 results.