A162005 The EG1 triangle.
1, 2, 1, 16, 28, 1, 272, 1032, 270, 1, 7936, 52736, 36096, 2456, 1, 353792, 3646208, 4766048, 1035088, 22138, 1, 22368256, 330545664, 704357760, 319830400, 27426960, 199284, 1, 1903757312, 38188155904, 120536980224, 93989648000
Offset: 1
Examples
The first few rows of the EG1 triangle are : [1] [2, 1] [16, 28, 1] [272, 1032, 270, 1] The first few RG(z,1-2*m) polynomials are: RG(z,-1) = 1 RG(z,-3) = 2+z RG(z,-5) = 16+28*z+z^2 RG(z,-7) = 272+1032*z+270*z^2+z^3 The first few GFREG1(z,1-2*m) are: GFREG1(z,-1) = (1)*(1)/(2*(1-z)^(3/2)) GFREG1(z,-3) = (-1)*(2+z)/(2^3*(1-z)^(5/2)) GFREG1(z,-5) = (1)*(16+28*z+z^2)/( 2^5*(1-z)^(7/2)) GFREG1(z,-7) = (-1)*(272+1032*z+270*z^2+z^3)/(2^7*(1-z)^(9/2)) The first few REG1(1-2*m,n) are: REG1(-1,n) = (1/1)*(1)*(1/n)*4^(-n)*(2*n)!/(n-1)!^2 REG1(-3,n) = (-1/2)*(n) *(1/n)*4^(-n)*(2*n)!/(n-1)!^2 REG1(-5,n) = (1/4) *(n+3*n^2) *(1/n)*4^(-n)*(2*n)!/(n-1)!^2 REG1(-7,n) = (-1/8)*(4*n+15*n^2+15*n^3) *(1/n)*4^(-n)*(2*n)!/(n-1)!^2 The first few ECGP(1-2*m,n) polynomials are: ECGP(-1,n) = 1 ECGP(-3,n) = n ECGP(-5,n) = n+3*n^2 ECGP(-7,n) = 4*n+15*n^2+15*n^3
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
Programs
-
Maple
nmax:=7; mmax := nmax: imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1) * (x+1)*T1(i-1, x+1)-2*x^2*T1(i-1, x)): dx := degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1=0..dx): od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do A094665(n+1, k+1) := A083061(n, k) od: od: A094665(0, 0) := 1: for n from 1 to nmax do A094665(n, 0) := 0 od: for m from 1 to mmax do A156919(0, m) := 0 end do: for n from 0 to nmax do A156919(n, 0) := 2^n end do: for n from 1 to nmax do for m from 1 to mmax do A156919(n, m) := (2*m+2)*A156919(n-1, m) + (2*n-2*m+1)*A156919(n-1, m-1) end do end do: for n from 0 to nmax do SF(n) := sum(A156919(n, k1)*z^k1, k1=0..n)/(2^(n+1)*(1-z)^((2*n+3)/2)) od: GFREG1(z, -1) := A156919(0, 0)*A094665 (0, 0) / (2*(1-z)^(3/2)): for m from 2 to nmax do GFREG1(z, 1-2*m) := simplify((-1)^(m+1)*2^(1-m)* sum(A094665(m-1, k2)*SF(k2), k2=1..m-1)) od: for m from 1 to mmax do g(m) := sort((numer ((-1)^(m+1)* GFREG1(z, 1-2*m))), ascending) od: for n from 1 to nmax do for m from 1 to n do a(n, m) := abs(coeff(g(n), z, m-1)) od: od: seq(seq(a(n, m), m=1..n), n=1..nmax); # Maple program edited by Johannes W. Meijer, Sep 25 2012
Formula
A different form of the recurrence relation is EG1[1-2*m,n] = (EG1[3-2*m,n]-EG1[3-2*m,n+1])* (n^2) for m = 2, 3, .., with EG1[ -1,n] = (1/n)*4^(-n)*((2*n)!/(n-1)!^2).
Comments