A162144 Products of cubes of 3 distinct primes.
27000, 74088, 287496, 343000, 474552, 1061208, 1157625, 1331000, 1481544, 2197000, 2628072, 3652264, 4492125, 4913000, 5268024, 6028568, 6434856, 6859000, 7414875, 10941048, 12167000, 12326391, 13481272, 14886936, 16581375, 17173512, 18821096
Offset: 1
Keywords
Examples
27000 = 2^3*3^3*5^3. 74088 = 2^3*3^3*7^3. 287496 = 2^3*3^3*11^3.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
fQ[n_]:=Last/@FactorInteger[n]=={1,1,1}; Select[Range[1000], fQ]^3
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A162144(n): def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f)**3 # Chai Wah Wu, Aug 30 2024
Formula
Extensions
Edited by R. J. Mathar, Aug 14 2009
Comments