cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162163 Primes p such that p-1 and p+1 can individually be written as a sum of 2 and also as a sum of 3 distinct nonzero squares.

Original entry on oeis.org

179, 467, 739, 809, 1097, 1171, 1619, 1801, 1873, 1907, 2467, 3203, 3331, 3491, 3923, 4051, 4177, 4211, 4931, 5507, 5651, 6067, 6121, 6353, 6569, 6659, 7219, 8081, 8243, 8297, 8353, 8819, 9091, 9161, 9377, 10243, 10531, 10657, 10729, 10889, 11251, 11699
Offset: 1

Views

Author

Vladimir Joseph Stephan Orlovsky, Jun 26 2009, Jun 27 2009

Keywords

Comments

A subsequence of A162164.

Examples

			p=12113: p-1=12112 = 36^2+40^2+96^2 = 36^2+104^2; p+1=12114 = 33^2+63^2+84^2 = 33^2+105^2.
p=4177: p-1=4176 = 24^2+60^2 = 24^2+36^2+48^2; p+1=4178 = 37^2+53^2 = 37^2+28^2+45^2. - _Vladimir Joseph Stephan Orlovsky_, Jun 26 2009
p=179: p-1=178 = 3^2+13^2 = 3^2+5^2+12^2; p+1=180 = 6^2+12^2=4^2+8^2+10^2. - _R. J. Mathar_, Jul 02 2009
		

Programs

  • Maple
    isA004431 := proc(n) local x,y ; for x from 1 do if x^2 > n then RETURN(false); fi; y := n-x^2 ; if y> 0 and issqr(y ) then y := sqrt(y) ; if y <> x then RETURN(true) ; fi; fi; od: end:
    isA004432 := proc(n) local x,y,z ; for x from 1 do if x^2 > n then RETURN(false); fi; for y from x+ 1 do if x^2+y^2>n then break ; fi; z := n-x^2-y^2 ; if z> 0 and issqr(z ) then z := sqrt(z) ; if z > y and z > x then RETURN(true) ; fi; fi; od: od: end:
    for n from 1 to 2000 do p := ithprime(n) ; if isA004432(p-1) and isA004432(p+1) and isA004431(p-1) and isA004431(p+1) then printf("%d,",p) ; fi; od: # R. J. Mathar, Jul 02 2009
  • Mathematica
    f[n_]:=Module[{k=1},While[(n-k^2)^(1/2)!=IntegerPart[(n-k^2)^(1/2)],k++; If[2*k^2>=n,k=0;Break[]]];k]; lst={};Do[p=Prime[n];x=p-1;y=p+1;If[f[x]> 0&&f[y]>0,a=x-(f[x])^2;b=y-(f[y])^2;If[f[a]>0&&f[b]>0,c=(x-(f[x])^2-(f[a])^2)^(1/ 2);d=(y-(f[y])^2-(f[b])^2)^(1/2);If[c!=f[x]&&c!=f[a]&&f[x]!=f[a], If[d!=f[y]&&d!=f[b]&&f[y]!=f[b],AppendTo[lst,p]]]]],{n,3,6*6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 26 2009 *)

Formula

{p=A000040(i): p-1 in A004431 and p-1 in A004432 and p+1 in A004431 and p+1 in A004432}. - R. J. Mathar, Jul 02 2009

Extensions

Definition corrected, Mathematica duplicate removed, missing values added by R. J. Mathar, Jul 02 2009