A162164 Primes p such that p-1 and p+1 can be written as a sum of 2 distinct nonzero squares.
179, 233, 467, 521, 739, 809, 1097, 1171, 1601, 1619, 1801, 1873, 1907, 2467, 3203, 3329, 3331, 3491, 3923, 4051, 4177, 4211, 4931, 5507, 5651, 6067, 6121, 6353, 6569, 6659, 7219, 8081, 8243, 8297, 8353, 8819, 9091, 9161, 9377, 10243, 10531, 10657
Offset: 1
Keywords
Examples
p=179 is a term because 179 - 1 = 3^2 + 13^2 and 179 + 1 = 6^2 + 12^2.
Programs
-
Maple
isA004431 := proc(n) local x,y ; for x from 1 do if x^2 > n then RETURN(false); fi; y := n-x^2 ; if y> 0 and issqr(y ) then y := sqrt(y) ; if y <> x then RETURN(true) ; fi; fi; od: end: for n from 1 to 2000 do p := ithprime(n) ; if isA004431(p-1) and isA004431(p+1) then printf("%d,",p) ; fi; od: # R. J. Mathar, Jul 02 2009
-
Mathematica
f[n_]:=Module[{k=1},While[(n-k^2)^(1/2)!=IntegerPart[(n-k^2)^(1/2)],k++; If[2*k^2>=n,k=0;Break[]]];k]; lst={};Do[p=Prime[n];If[f[p-1]>0&&f[p+1]> 0,AppendTo[lst,p]],{n,4*6!}];lst
Formula
Extensions
Definition corrected, R. J. Mathar, Jul 02 2009