cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162203 The mountain path of the primes (see comment lines for definition).

Original entry on oeis.org

2, 2, 2, 3, 1, -1, 1, 3, 1, -1, 1, 3, 1, -3, 1, 4, 1, -2, 1, 5, 1, -1, 1, 3, 1, -3, 1, 6, 1, -2, 1, 4, 1, -3, 1, 3, 1, -2, 1, 5, 1, -3, 1, 7, 1, -4, 1, 3, 1, -1, 1, 3, 1, -1, 1, 9, 1, -7, 1, 5, 1, -2, 1, 6, 1, -4, 1, 4, 1, -4, 1, 5, 1, -3, 1, 6, 1, -2, 1, 6
Offset: 1

Views

Author

Omar E. Pol, Jun 27 2009

Keywords

Comments

On the infinite square grid we draw an infinite straight line from the point (1,0) in direction (2,1).
We start at stage 1 from the point (0,0) drawing an edge ((0,0),(2,0)) in a horizontal direction.
At stage 2 we draw an edge ((2,0),(2,2)) in a vertical direction. We can see that the straight line intercepts at the number 3 (the first odd prime).
At stage 3 we draw an edge ((2,2),(4,2)) in a horizontal direction. We can see that the straight line intercepts at the number 5 (the second odd prime).
And so on (see illustrations).
The absolute value of a(n) is equal to the length of the n-th edge of a path, or infinite square polyedge, such that the mentioned straight line intercepts, on the path, at the number 1 and the odd primes. In other words, the straight line intercepts the odd noncomposite numbers (A006005).
The position of the x-th odd noncomposite number A006005(x) is represented by the point P(x,x-1).
So the position of the first prime number is represented by the point P(2,0) and position of the x-th prime A000040(x), for x>1, is represented by the point P(x,x-1); for example, 31, the 11th prime, is represented by the point P(11,10).
See also A162200, A162201 and A162202 for more information.

Examples

			Array begins:
=====
X..Y
=====
2, 2;
2, 3;
1,-1;
1, 3;
1,-1;
1, 3;
1,-3;
1, 4;
1,-2;
1, 5;
		

Crossrefs

Programs

  • PARI
    \\ (After Nathaniel Johnston_'s formula):
    A052288(n) = ((prime(n+3) - prime(n+1))/2);
    A162203(n) = if(n<=3, 2, if(n%2, 1, 1+((-1)^(n/2)*(A052288(n/2)-1)))); \\ Antti Karttunen, Mar 02 2023

Formula

From Nathaniel Johnston, May 10 2011: (Start)
a(2n+1) = 1 for n >= 2.
a(2n) = (-1)^n*(A162341(n+2) - 1) = (-1)^n*(A052288(n) - 1) + 1 for n >= 2. (End)

Extensions

Edited by Omar E. Pol, Jul 02 2009
More terms from Nathaniel Johnston, May 10 2011