cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162245 Triangle T(n,m) = 6*m*n + 3*m + 3*n + 1 read by rows.

Original entry on oeis.org

13, 22, 37, 31, 52, 73, 40, 67, 94, 121, 49, 82, 115, 148, 181, 58, 97, 136, 175, 214, 253, 67, 112, 157, 202, 247, 292, 337, 76, 127, 178, 229, 280, 331, 382, 433, 85, 142, 199, 256, 313, 370, 427, 484, 541, 94, 157, 220, 283, 346, 409, 472, 535, 598, 661
Offset: 1

Views

Author

Vincenzo Librandi, Jun 28 2009

Keywords

Comments

If h belongs to the main diagonal of the triangle then 6*h+3 is a square since T(n,n) = (3/2)*(2*n+1)^2-1/2 and 6*T(n,n)+3 = 9*(2*n+1)^2. Also, the first column is A017209 (after 4). - Vincenzo Librandi, Nov 20 2012

Examples

			Triangle begins:
13;
22, 37;
31, 52,  73;
40, 67,  94,  121;
49, 82,  115, 148, 181;
58, 97,  136, 175, 214, 253;
67, 112, 157, 202, 247, 292, 337;
76, 127, 178, 229, 280, 331, 382, 433; etc.
		

Crossrefs

Programs

  • Magma
    [6*n*k + 3*n + 3*k + 1:  k in [1..n],  n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
  • Mathematica
    Flatten@Table[6*m*n + 3*m + 3*n + 1, {n, 20}, {m, n}] (* Vincenzo Librandi, Mar 03 2012 *)

Formula

Row sums: Sum_{m=1..n} T(n,m) = n*(5+6*n^2+15*n)/2. - R. J. Mathar, Jul 26 2009
T(n,m) = 3*A083487(n,m)+1. - R. J. Mathar, Jul 26 2009
T(k,k) = A003154(k+1) and T(k+1,k) = A163433(k+2). - Avi Friedlich, May 22 2015

Extensions

Edited by R. J. Mathar, Jul 26 2009