A162245 Triangle T(n,m) = 6*m*n + 3*m + 3*n + 1 read by rows.
13, 22, 37, 31, 52, 73, 40, 67, 94, 121, 49, 82, 115, 148, 181, 58, 97, 136, 175, 214, 253, 67, 112, 157, 202, 247, 292, 337, 76, 127, 178, 229, 280, 331, 382, 433, 85, 142, 199, 256, 313, 370, 427, 484, 541, 94, 157, 220, 283, 346, 409, 472, 535, 598, 661
Offset: 1
Examples
Triangle begins: 13; 22, 37; 31, 52, 73; 40, 67, 94, 121; 49, 82, 115, 148, 181; 58, 97, 136, 175, 214, 253; 67, 112, 157, 202, 247, 292, 337; 76, 127, 178, 229, 280, 331, 382, 433; etc.
Links
- Vincenzo Librandi, Rows n = 1..100, flattened
Programs
-
Magma
[6*n*k + 3*n + 3*k + 1: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
-
Mathematica
Flatten@Table[6*m*n + 3*m + 3*n + 1, {n, 20}, {m, n}] (* Vincenzo Librandi, Mar 03 2012 *)
Formula
Row sums: Sum_{m=1..n} T(n,m) = n*(5+6*n^2+15*n)/2. - R. J. Mathar, Jul 26 2009
T(n,m) = 3*A083487(n,m)+1. - R. J. Mathar, Jul 26 2009
Extensions
Edited by R. J. Mathar, Jul 26 2009
Comments