A162299 Faulhaber's triangle: triangle T(k,y) read by rows, giving denominator of the coefficient [m^y] of the polynomial Sum_{x=1..m} x^(k-1).
1, 2, 2, 6, 2, 3, 1, 4, 2, 4, 30, 1, 3, 2, 5, 1, 12, 1, 12, 2, 6, 42, 1, 6, 1, 2, 2, 7, 1, 12, 1, 24, 1, 12, 2, 8, 30, 1, 9, 1, 15, 1, 3, 2, 9, 1, 20, 1, 2, 1, 10, 1, 4, 2, 10, 66, 1, 2, 1, 1, 1, 1, 1, 6, 2, 11, 1, 12, 1, 8, 1, 6, 1, 8, 1, 12, 2, 12, 2730, 1, 3, 1, 10, 1, 7, 1, 6, 1, 1, 2, 13, 1, 420, 1, 12, 1, 20, 1, 28, 1, 60, 1, 12, 2, 14, 6, 1, 90, 1, 6, 1, 10, 1, 18, 1, 30, 1, 6, 2, 15
Offset: 0
Examples
The first few polynomials: m; m/2 + m^2/2; m/6 + m^2/2 + m^3/3; 0 + m^2/4 + m^3/2 + m^4/4; -m/30 + 0 + m^3/3 + m^4/2 + m^5/5; ... Initial rows of Faulhaber's triangle of fractions H(n, k) (n >= 0, 1 <= k <= n+1): 1; 1/2, 1/2; 1/6, 1/2, 1/3; 0, 1/4, 1/2, 1/4; -1/30, 0, 1/3, 1/2, 1/5; 0, -1/12, 0, 5/12, 1/2, 1/6; 1/42, 0, -1/6, 0, 1/2, 1/2, 1/7; 0, 1/12, 0, -7/24, 0, 7/12, 1/2, 1/8; -1/30, 0, 2/9, 0, -7/15, 0, 2/3, 1/2, 1/9; ... The triangle starts in row k=1 with columns 1<=y<=k as 1 2 2 6 2 3 1 4 2 4 30 1 3 2 5 1 12 1 12 2 6 42 1 6 1 2 2 7 1 12 1 24 1 12 2 8 30 1 9 1 15 1 3 2 9 1 20 1 2 1 10 1 4 2 10 66 1 2 1 1 1 1 1 6 2 11 1 12 1 8 1 6 1 8 1 12 2 12 2730 1 3 1 10 1 7 1 6 1 1 2 13 1 420 1 12 1 20 1 28 1 60 1 12 2 14 6 1 90 1 6 1 10 1 18 1 30 1 6 2 15 ... Initial rows of triangle of fractions: 1; 1/2, 1/2; 1/6, 1/2, 1/3; 0, 1/4, 1/2, 1/4; -1/30, 0, 1/3, 1/2, 1/5; 0, -1/12, 0, 5/12, 1/2, 1/6; 1/42, 0, -1/6, 0, 1/2, 1/2, 1/7; 0, 1/12, 0, -7/24, 0, 7/12, 1/2, 1/8; -1/30, 0, 2/9, 0, -7/15, 0, 2/3, 1/2, 1/9; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Mohammad Torabi-Dashti, Faulhaber’s Triangle, College Math. J., 42:2 (2011), 96-97.
- Mohammad Torabi-Dashti, Faulhaber’s Triangle [Annotated scanned copy of preprint]
- Eric Weisstein's MathWorld, Power Sum
Programs
-
Maple
A162299 := proc(k,y) local gf,x; gf := sum(x^(k-1),x=1..m) ; coeftayl(gf,m=0,y) ; denom(%) ; end proc: # R. J. Mathar, Jan 24 2011 # To produce Faulhaber's triangle of fractions H(n,k) (n >= 0, 1 <= k <= n+1): H:=proc(n,k) option remember; local i; if n<0 or k>n+1 then 0; elif n=0 then 1; elif k>1 then (n/k)*H(n-1,k-1); else 1 - add(H(n,i),i=2..n+1); fi; end; for n from 0 to 10 do lprint([seq(H(n,k),k=1..n+1)]); od: for n from 0 to 12 do lprint([seq(numer(H(n,k)),k=1..n+1)]); od: # A162298 for n from 0 to 12 do lprint([seq(denom(H(n,k)),k=1..n+1)]); od: # A162299 # N. J. A. Sloane, Jan 28 2017
-
Mathematica
H[n_, k_] := H[n, k] = Which[n < 0 || k > n+1, 0, n == 0, 1, k > 1, (n/k)* H[n - 1, k - 1], True, 1 - Sum[H[n, i], {i, 2, n + 1}]]; Table[H[n, k] // Denominator, {n, 0, 14}, {k, 1, n + 1}] // Flatten (* Jean-François Alcover, Aug 04 2022 *)
Formula
Faulhaber's triangle of fractions H(n,k) (n >= 0, 1 <= k <= n+1) is defined by: H(0,1)=1; for 2<=k<=n+1, H(n,k) = (n/k)*H(n-1,k-1) with H(n,1) = 1 - Sum_{i=2..n+1}H(n,i). - N. J. A. Sloane, Jan 28 2017
Sum_{x=1..m} x^(k-1) = (Bernoulli(k,m+1)-Bernoulli(k))/k.
Extensions
Offset set to 0 by Alois P. Heinz, Feb 19 2021
Comments