cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162314 Row sums of A162313.

Original entry on oeis.org

1, 4, 24, 208, 2400, 34624, 599424, 12107008, 279467520, 7257355264, 209403009024, 6646303019008, 230126121738240, 8632047179874304, 348695526455476224, 15091839203924574208, 696733490476660162560
Offset: 0

Views

Author

Peter Bala, Jul 01 2009

Keywords

Comments

Conjecture: for fixed k = 1,2,..., the sequence obtained by reducing a(n) modulo k is eventually periodic with the exact period dividing phi(k), where phi(k) is the Euler totient function A000010. For example, modulo 24 the sequence becomes [1, 4, 0, 16, 0 16, 0, 16, ...] with an apparent period of 2 beginning at a(2). - Peter Bala, Jul 08 2022

Crossrefs

Programs

  • Maple
    #A162314
    with(combinat):
    a:= n -> 2^n*add(k!*Stirling2(n+1,k+1), k = 0..n):
    seq(a(n), n = 0..16);

Formula

a(n) = 2^n*A000629(n) = 2^n*Sum_{k = 0..n} k!*Stirling2(n+1,k+1).
E.g.f.: exp(2*x)/(2-exp(2*x)) = 1 + 4*x + 24*x^2/2! + 208*x^3/3! + ....
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - 8*x*(k+1)/(8*x*(k+1) - 1 + 4*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
From Peter Bala, Jul 08 2022: (Start)
a(n) = Sum_{k = 0..n} (-2)^(n+k)*k!*Stirling2(n,k).
Conjectural o.g.f. as a continued fraction of Stieltjes type: 1/(1 - 4*x/(1 - 2*x/(1 - 8*x/(1 - 4*x/(1 - ... - 3*n*x/(1 - 2*n*x/(1 - ...))))))). (End)