A162315 Triangular array 2*P - P^-1, where P is Pascal's triangle A007318.
1, 3, 1, 1, 6, 1, 3, 3, 9, 1, 1, 12, 6, 12, 1, 3, 5, 30, 10, 15, 1, 1, 18, 15, 60, 15, 18, 1, 3, 7, 63, 35, 105, 21, 21, 1, 1, 24, 28, 168, 70, 168, 28, 24, 1, 3, 9, 108, 84, 378, 126, 252, 36, 27, 1, 1, 30, 45, 360, 210, 756, 210, 360, 45, 30, 1
Offset: 0
Examples
Triangle begins ================================================= n\k|..0.....1.....2.....3.....4.....5.....6.....7 ================================================= 0..|..1 1..|..3.....1 2..|..1.....6.....1 3..|..3.....3.....9.....1 4..|..1....12.....6....12.....1 5..|..3.....5....30....10....15.....1 6..|..1....18....15....60....15....18.....1 7..|..3.....7....63....35...105....21....21.....1 ...
Programs
-
Maple
#A162315 T:=(n, k)->(2-(-1)^(n-k))*binomial(n,k): for n from 0 to 10 do seq(T(n,k), k = 0..n) od;
Formula
TABLE ENTRIES
(1)... T(n,k) = (2 - (-1)^(n-k))*binomial(n,k).
GENERATING FUNCTION
(2)... exp(x*t)*(2*exp(t)-exp(-t)) = 1 + (3+x)*t + (1+6*x+x^2)*t^2/2!
+ ....
The e.g.f. can also be written as
(3)... exp(x*t)/G(-t), where G(t) = exp(t)/(2-exp(2*t)) is the e.g.f.
for A080253.
MISCELLANEOUS
The row polynomials form an Appell sequence of polynomials.
Row sums = A151821.
Extensions
Row sums corrected by Peter Bala, Apr 01 2010
Comments