cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162416 G.f.: A(x) = exp( Sum_{n>=1} A162415(n)^2*x^n/n ) where A162415 is defined by: Sum_{n>=0} x^(2^n-1) = exp( Sum_{n>=1} A162415(n)*x^n/n ).

Original entry on oeis.org

1, 1, 1, 6, 12, 19, 48, 147, 305, 628, 1607, 3748, 8140, 18779, 44521, 102625, 233230, 540343, 1254459, 2877651, 6614799, 15288779, 35283125, 81210949, 187173219, 431917054, 995565240, 2293851990, 5288703013, 12194473395, 28108088241
Offset: 0

Views

Author

Paul D. Hanna, Jul 02 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 6*x^3 + 12*x^4 + 19*x^5 + 48*x^6 +...
log(A(x)) = x + x^2/2 + 4^2*x^3/3 + 5^2*x^4/4 + 6^2*x^5/5 + 10^2*x^6/6 +...
where the coefficients are the squares of the coefficients in L(x):
L(x) = log(1 + x + x^3 + x^7 + x^15 +...+ x^(2^n-1) +...);
L(x) = x - x^2/2 + 4*x^3/3 - 5*x^4/4 + 6*x^5/5 - 10*x^6/6 + 22*x^7/7 -+...
		

Crossrefs

Cf. A162415.

Programs

  • PARI
    {a(n)=local(L=Vec(log(sum(m=0,#binary(n),x^(2^m-1))+x*O(x^n)))); polcoeff(exp(sum(k=1,n,L[k]^2*k*x^k)+x*O(x^n)),n)}