A162485 a(1)=4, a(2)=6; for n > 2, a(n) = 2*a(n-1) + a(n-2) - 4*((n-1) mod 2).
4, 6, 16, 34, 84, 198, 480, 1154, 2788, 6726, 16240, 39202, 94644, 228486, 551616, 1331714, 3215044, 7761798, 18738640, 45239074, 109216788, 263672646, 636562080, 1536796802, 3710155684, 8957108166, 21624372016, 52205852194, 126036076404, 304278004998, 734592086400
Offset: 1
Examples
a(3) = 2*a(2) + a(1) - 4*(2 mod 2) = 2*6 + 4 - 0 = 16.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..1000
- Sarah-Marie Belcastro, Domino Tilings of 2 X n Grids (or Perfect Matchings of Grid Graphs) on Surfaces, J. Integer Seq. 26 (2023), Article 23.5.6.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-2,-1).
Crossrefs
Cf. A002203.
Programs
-
Mathematica
LinearRecurrence[{2, 2, -2, -1}, {4, 6, 16, 34}, 50] (* Paolo Xausa, Jun 27 2025 *)
Formula
For n > 1, a(n) = (1/2)*((1 + sqrt(2))^n*(2 + (-1 + sqrt(2))^(2*floor((1/2)*(-1 + n)))*(-4 + 3*sqrt(2))) + (1 - sqrt(2))^n*(2 - (-1 - sqrt(2))^(2*floor((1/2)*(-1 + n)))*(4 + 3*sqrt(2)))).
From Colin Barker, May 01 2012: (Start)
a(n) = 1 - (-1)^n + (1-sqrt(2))^n + (1+sqrt(2))^n.
G.f.: 2*x*(2-x-2*x^2-x^3)/(1-x)/(1+x)/(1-2*x-x^2). (End)
a(n) = A002203(n) + 1 - (-1)^n. - R. J. Mathar, Oct 08 2016
Comments