cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162485 a(1)=4, a(2)=6; for n > 2, a(n) = 2*a(n-1) + a(n-2) - 4*((n-1) mod 2).

Original entry on oeis.org

4, 6, 16, 34, 84, 198, 480, 1154, 2788, 6726, 16240, 39202, 94644, 228486, 551616, 1331714, 3215044, 7761798, 18738640, 45239074, 109216788, 263672646, 636562080, 1536796802, 3710155684, 8957108166, 21624372016, 52205852194, 126036076404, 304278004998, 734592086400
Offset: 1

Views

Author

Sarah-Marie Belcastro, Jul 04 2009

Keywords

Comments

a(n) is the number of perfect matchings of an edge-labeled 2 X n Klein bottle grid graph, or equivalently the number of domino tilings of a 2 X n Klein bottle grid. (The twist is on the length-2 side.)

Examples

			a(3) = 2*a(2) + a(1) - 4*(2 mod 2) = 2*6 + 4 - 0 = 16.
		

Crossrefs

Cf. A002203.

Programs

  • Mathematica
    LinearRecurrence[{2, 2, -2, -1}, {4, 6, 16, 34}, 50] (* Paolo Xausa, Jun 27 2025 *)

Formula

For n > 1, a(n) = (1/2)*((1 + sqrt(2))^n*(2 + (-1 + sqrt(2))^(2*floor((1/2)*(-1 + n)))*(-4 + 3*sqrt(2))) + (1 - sqrt(2))^n*(2 - (-1 - sqrt(2))^(2*floor((1/2)*(-1 + n)))*(4 + 3*sqrt(2)))).
From Colin Barker, May 01 2012: (Start)
a(n) = 1 - (-1)^n + (1-sqrt(2))^n + (1+sqrt(2))^n.
G.f.: 2*x*(2-x-2*x^2-x^3)/(1-x)/(1+x)/(1-2*x-x^2). (End)
a(n) = A002203(n) + 1 - (-1)^n. - R. J. Mathar, Oct 08 2016