A162508 A binomial sum of powers related to the Bernoulli numbers, triangular array, read by rows.
-1, -2, 2, -4, 10, -6, -8, 38, -54, 24, -16, 130, -330, 336, -120, -32, 422, -1710, 3000, -2400, 720, -64, 1330, -8106, 21840, -29400, 19440, -5040, -128, 4118, -36414, 141624, -285600, 312480, -176400, 40320
Offset: 1
Examples
For n >= 1, k >= 1: ..................... -1 ................... -2, 2 ................. -4, 10, -6 .............. -8, 38, -54, 24 ......... -16, 130, -330, 336, -120 ..... -32, 422, -1710, 3000, -2400, 720 -64, 1330, -8106, 21840, -29400, 19440, -5040
Links
- Vincenzo Librandi, Rows n = 1..50, flattened
Programs
-
Maple
T := proc(n,k) local v; if n=0 and k=0 then 1 else add((-1)^v*v*binomial(k,v)*(v+1)^(n-1),v=0..k) fi end: # Peter Bala's e.g.f. assuming offset 0: egf := (x, z) -> -((1-x)/exp(z) + x)^(-2): ser := series(egf(x, z), z, 10): coz := n -> n!*coeff(ser, z, n): row := n -> seq(coeff(coz(n), x, k), k = 0..n): seq(print(row(n)), n = 0..9); # Peter Luschny, Jan 28 2021
-
Mathematica
t[n_, k_] := Sum[(-1)^v*v*Binomial[k, v]*(v + 1)^(n - 1), {v, 0, k}]; Table[t[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 26 2013, after Maple *)
-
Sage
def A162508(n, k): if n==0 and k==0: return 1 return add((-1)^v*v*binomial(k, v)*(v+1)^(n-1) for v in (0..k)) for n in (1..8): [A162508(n, k) for k in (1..n)] # Peter Luschny, Jul 21 2014
Formula
From Peter Bala, Jul 21 2014: (Start)
T(n,k) = (-1)^k*k!*( Stirling2(n+1,k+1) - Stirling2(n,k+1) ), 1 <= k <= n.
T(n,k) = (-1)^k*(k + 1)*A038719(n+1,k+1).
E.g.f.: - B(-x,z)^2, where B(x,z) = 1/((1 + x)*exp(-z) - x) = 1 + (1 + x)*z + (1 + 3*x + 2*x^2)*z^2/2! + ... is an e.g.f. for A028246 (with an offset of 0).
Recurrence: T(n,k) = (k + 1)*T(n-1,k) - k*T(n-1,k-1).
Assuming this triangle is a signed version of A199400 then the n-th row polynomial R(n,x) = 1/(1 - x)*( sum {k = 1..inf} k*(k + 1)^(n-1)*(x/(x - 1))^k ), valid for x in the open interval (-inf, 1/2). (End)
Extensions
More terms from Philippe Deléham, Nov 05 2011
Comments