cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162510 Dirichlet inverse of A076479.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 8, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 4, 2, 1, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 8, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 2, 1, 1, 2, 32, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 8, 8, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 16, 1, 2, 2, 4, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Gerard P. Michon, Jul 05 2009

Keywords

Comments

Apart from signs, this sequence is identical to A162512.

Crossrefs

Programs

  • Maple
    A162510 := proc(n)
        local a,f;
        a := 1;
        for f in ifactors(n)[2] do
            a := a*2^(op(2,f)-1) ;
        end do:
        return a;
    end proc: # R. J. Mathar, May 20 2017
  • Mathematica
    a[n_] := 2^(PrimeOmega[n] - PrimeNu[n]); Array[a, 100] (* Jean-François Alcover, Apr 24 2017, after R. J. Mathar *)
  • PARI
    a(n)=my(f=factor(n)[,2]); 2^(vecsum(f)-#f) \\ Charles R Greathouse IV, Nov 02 2016
    
  • Python
    from sympy import factorint
    from operator import mul
    def a(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [2**(f[i] - 1) for i in f]) # Indranil Ghosh, May 20 2017

Formula

Multiplicative with a(p^e) = 2^(e-1) for any prime p and any positive exponent e.
a(n) = n/2 when n is a power of 2 (A000079).
a(n) = 1 when n is a squarefree number (A005117).
a(n) = 2^A046660(n) = A061142(n)/A034444(n). - R. J. Mathar, Nov 02 2016
a(n) = Sum_{d|n} mu(d) * 2^A001222(n/d). - Daniel Suteu, May 21 2020
a(1) = 1; a(n) = -Sum_{d|n, d < n} (-1)^omega(n/d) * a(d). - Ilya Gutkovskiy, Mar 10 2021
Dirichlet g.f.: (1/zeta(s)) * Product_{p prime} (1/(1 - 2/p^s)). - Amiram Eldar, Sep 16 2023
Sum_{k=1..n} 1/a(k) = c * n + o(n), where c = Product_{p prime} (1 - 1/(p*(2*p-1))) = 0.74030830284678515949... (Jakimczuk, 2024, Theorem 2.4, p. 16). - Amiram Eldar, Mar 08 2024
From Vaclav Kotesovec, Mar 08 2024: (Start)
Dirichlet g.f.: zeta(s) * (1 + 1/(2^s*(2^s - 2))) * f(s), where f(s) = Product_{p prime, p>2} (1 + 1/(p^s*(p^s - 2))).
Sum_{k=1..n} a(k) ~ (f(1)*n / (4*log(2))) * (log(n) - 1 + gamma + 5*log(2)/2 + f'(1)/f(1)), where
f(1) = Product_{p prime, p>2} (1 + 1/(p*(p-2))) = A167864 = 1.51478012813749125771853381230067247330485921179389884042843306025133959...,
f'(1) = f(1) * Sum_{p prime, p>2} (-2*log(p)/((p-1)*(p-2))) = -2*f(1)*A347195 = -2.6035805486753944250682818932032862770113061830543948257159113584026980...
and gamma is the Euler-Mascheroni constant A001620. (End)