A162515 Triangle of coefficients of polynomials defined by Binet form: P(n,x) = (U^n - L^n)/d, where U = (x + d)/2, L = (x - d)/2, d = sqrt(x^2 + 4).
0, 1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 0, 1, 1, 0, 4, 0, 3, 0, 1, 0, 5, 0, 6, 0, 1, 1, 0, 6, 0, 10, 0, 4, 0, 1, 0, 7, 0, 15, 0, 10, 0, 1, 1, 0, 8, 0, 21, 0, 20, 0, 5, 0, 1, 0, 9, 0, 28, 0, 35, 0, 15, 0, 1, 1, 0, 10, 0, 36, 0, 56, 0, 35, 0, 6, 0, 1, 0, 11, 0, 45, 0, 84, 0, 70, 0, 21, 0, 1
Offset: 0
Examples
Polynomial expansion: 0; 1; x; x^2 + 1; x^3 + 2*x; x^4 + 3*x^2 + 1; First rows: 0; 1; 1, 0; 1, 0, 1; 1, 0, 2, 0; 1, 0, 3, 0, 1; 1, 0, 4, 0, 3, 0; Row 6 matches P(6,x)=x^5 + 4*x^3 + 3*x.
Links
- G. C. Greubel, Rows n = 0..101 of triangle
- T. Copeland, Addendum to Elliptic Lie Triad
Programs
-
GAP
T:= function(n,k) if (k mod 2)=0 then return Binomial(n- k/2, k/2); else return 0; fi; end; Concatenation([0], Flat(List([0..15], n-> List([0..n], k-> T(n,k) ))) ); # G. C. Greubel, Jan 01 2020
-
Magma
function T(n,k) if (k mod 2) eq 0 then return Round( Gamma(n-k/2+1)/(Gamma(k/2+1)*Gamma(n-k+1))); else return 0; end if; return T; end function; [0] cat [T(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 01 2020
-
Maple
0, seq(seq(`if`(`mod`(k,2)=0, binomial(n-k/2, k/2), 0), k = 0..n), n = 0..15); # G. C. Greubel, Jan 01 2020
-
Mathematica
Join[{0}, Table[If[EvenQ[k], Binomial[n-k/2, k/2], 0], {n,0,15}, {k,0,n} ]//Flatten] (* G. C. Greubel, Jan 01 2020 *)
-
PARI
row(n,d=sqrt(1+x^2/4+O(x^n))) = Vec(if(n,Pol(((x/2+d)^n-(x/2-d)^n)/d)>>1)) \\ M. F. Hasler, Dec 07 2011, edited Jul 05 2021
-
Sage
@CachedFunction def T(n, k): if (k%2==0): return binomial(n-k/2, k/2) else: return 0 [0]+flatten([[T(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jan 01 2020
Formula
P(n,x) = x*P(n-1, x) + P(n-2, x), where P(0,x)=0 and P(1,x)=1.
T(n,k) = T(n-1, k) + T(n-2, k-2) for n>=2. - Philippe Deléham, Dec 08 2013
Comments