cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162527 Numbers k whose largest divisor <= sqrt(k) equals 7.

Original entry on oeis.org

49, 56, 63, 70, 77, 84, 91, 98, 105, 119, 133, 147, 161, 175, 203, 217, 245, 259, 287, 301, 329, 343, 371, 413, 427, 469, 497, 511, 553, 581, 623, 679, 707, 721, 749, 763, 791, 889, 917, 959, 973, 1043, 1057, 1099, 1141, 1169, 1211, 1253, 1267, 1337, 1351
Offset: 1

Views

Author

Omar E. Pol, Jul 05 2009

Keywords

Comments

See A161344 for more information.

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n),list)) ; op(floor((nops(dvs)+1)/2) ,dvs) ; end: for n from 1 to 2000 do if A033676(n) = 7 then printf("%d,",n) ; fi; od: # R. J. Mathar, Jul 13 2009
  • Mathematica
    ld = 7;
    selQ[n_] := AllTrue[Divisors[n], # <= ld || #^2 > n&];
    Select[Range[ld, 200] ld, selQ] (* Jean-François Alcover, Apr 14 2020 *)
    ld7Q[n_]:=Select[Divisors[n],#<=Sqrt[n]&][[-1]]==7; Select[Range[1400],ld7Q] (* Harvey P. Dale, Jan 13 2023 *)

Formula

Numbers k such that A033676(k)=7.

Extensions

More terms from R. J. Mathar, Jul 13 2009