cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162533 a(n) = Sum_{k=0..n} binomial(n,2k)*A002426(k).

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 68, 176, 454, 1174, 3052, 7976, 20932, 55108, 145448, 384704, 1019462, 2706214, 7194956, 19155896, 51065260, 136284236, 364097912, 973654240, 2605983772, 6980545276, 18712478072, 50196568144, 134739960904, 361892443592, 972537193168
Offset: 0

Views

Author

Paul Barry, Jul 05 2009

Keywords

Comments

Hankel transform is (-1)^binomial(n,2)*(-2)^A128054(n) (see A128055).

Crossrefs

Cf. A027826.

Programs

  • Mathematica
    b[n_] := If[n < 0, 0, 3^n Hypergeometric2F1[1/2, -n, 1, 4/3]]; Table[Sum[Binomial[n, 2*k]*b[k], {k, 0, n}], {n, 0, 50}] (* or *) CoefficientList[Series[(1-x)/sqrt(1-4*x+4*x^2-4*x^4), {x, 0, 50}], x] (* G. C. Greubel, Feb 27 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-x)/sqrt(1-4*x+4*x^2-4*x^4)) \\ G. C. Greubel, Feb 27 2017

Formula

G.f.: (1-x)/((1-x)^2-x^2-2x^4/((1-x)^2-x^2-x^4/((1-x)^2-x^2-x^4/(1-... (continued fraction).
G.f.: (1-x)/sqrt(1-4*x+4*x^2-4*x^4) = (1-x)/sqrt((1-2*x)^2-4*x^4) = (1-x)/sqrt((1-x-2*x^2)*(1-x+2*x^2)). - Paul Barry, Oct 13 2009
Conjecture: n*a(n) + (4-5*n)*a(n-1) + 2*(4*n-7)*a(n-2) + 4*(3-n)*a(n-3) + 4*(2-n)*a(n-4) + 4*(n-4)*a(n-5) = 0. - R. J. Mathar, Nov 16 2011
a(n) ~ 3^(1/4) * (1 + sqrt(3))^(n + 1/2) / (2^(3/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jun 08 2019