cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162553 G.f.: A(x) = exp( Sum_{n>=1} A162552(n)^2*x^n/n ) where the l.g.f. of A162552 is the log of the characteristic function of the squares.

Original entry on oeis.org

1, 1, 1, 1, 3, 6, 10, 15, 18, 35, 73, 143, 230, 296, 416, 753, 1673, 2934, 4203, 5654, 9135, 17881, 33102, 52787, 73749, 107869, 189629, 359107, 619296, 923833, 1306855, 2065717, 3776424, 6823452, 10935160, 15822727, 23395694, 39675378
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2009

Keywords

Comments

A162552 is defined by: exp( Sum_{n>=1} A162552(n)*x^n/n ) = Sum_{n>=0} x^(n^2).

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 15*x^6 +...
log(A(x)) = x + x^2/2 + x^3/3 + 9*x^4/4 + 16*x^5/5 + 25*x^6/6 + 36*x^7/7 +...+ A162552(n)^2*x^n/n +...
Let L(x) = x - 1*x^2/2 + 1*x^3/3 + 3*x^4/4 - 4*x^5/5 + 5*x^6/6 - 6*x^7/7 +...+ A162552(n)*x^n/n +... then
exp(L(x)) = 1 + x + x^4 + x^9 + x^16 + x^25 + x^36 +...+ x^(n^2) +...
is the characteristic function of the squares (A010052).
		

Crossrefs

Cf. A162552, A010052, A162416 (variant).

Programs

  • PARI
    {a(n)=local(Q=sum(m=0,n,x^(m^2))+x*O(x^n),A); A=exp(sum(k=1,n,polcoeff(log(Q),k)^2*k*x^k)+x*O(x^n));polcoeff(A,n)}