cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A162575 Primes of the form 2^x+2*x+y+2^y, with x and y integers of any sign.

Original entry on oeis.org

2, 5, 7, 11, 17, 19, 41, 43, 53, 61, 71, 79, 113, 139, 149, 179, 211, 277, 283, 541, 563, 1051, 2063, 2081, 2083, 2591, 4129, 4157, 8209, 8219, 8221, 8353, 16547, 32797, 32801, 32933, 33827, 65579, 65581, 66089, 131113, 131143, 131231, 131627, 135209
Offset: 1

Views

Author

Keywords

Comments

Because 2^x and 2^y add to an integer only if x=y=-1, the set of x and y to be considered reduces to the set of x, y >= 0. - R. J. Mathar, Oct 29 2011

Crossrefs

Programs

  • Mathematica
    f[x_,y_]:=2^x+2*x+y+2^y; lst={};Do[Do[p=f[x,y];If[PrimeQ[p],AppendTo[lst,p]],{y,-5!,6!}],{x,-5!,6!}];Take[Union[lst],5! ]

A162576 Primes of the form x^2+2^x+y^2+2^y, with x and y nonnegative.

Original entry on oeis.org

11, 89, 103, 157, 277, 337, 601, 1181, 1301, 2269, 4243, 4297, 8369, 8461, 8681, 12601, 18749, 65809, 67961, 135601, 264637, 524681, 524969, 525773, 1049569, 2098717, 4326149, 8389237, 25166929, 33555089, 33555377, 34604033, 67109543
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_,y_]:=x^2+2^x+y^2+2^y;lst={};Do[Do[p=f[x,y];If[PrimeQ[p],AppendTo[lst,p]],{y,4*5!}],{x,4*5!}];Take[Union[lst],3*4! ]
  • PARI
    for(x=2,100,for(y=1,x-1,p=x^2+2^x+y^2+2^y;if(isprime(p),print1(p","))))

Extensions

Program by Charles R Greathouse IV, Oct 12 2009

A162577 Primes of the form (x+y)^2+2^x+2^y, with x and y nonnegative.

Original entry on oeis.org

2, 37, 43, 73, 101, 457, 1201, 2221, 4241, 6673, 49993, 65827, 131437, 262469, 262897, 1181017, 2098249, 4195273, 4195777, 4720273, 8389237, 8393929, 8652433, 16778089, 16909969, 33555289, 33556681, 33621649, 67110601
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

Corrected by Charles R Greathouse IV, Nov 11 2009
Showing 1-3 of 3 results.